首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel deoxyribonucleotide alpha-[d(CpCpTpTpCpC)] and its complement beta-[d(GpGpApApGpG)] were synthesized by the phosphotriester method. 1H-NMR-NOE examination of the alpha-hexamer revealed that the cytosine and thymine bases appear to adopt anti conformations in this strand. In addition the deoxyribose of the thymidine moieties may adopt average conformations approximating to C3'-endo while the cytidine furanose groups are close to C2'-endo conformations. Both hyperchromicity in thermal melting and detection of base paired imino protons in 1H-NMR studies in H2O provide evidence for the annealing of alpha-d[CCTTCC] with its complement beta-d[GGAAGG] in potassium phosphate buffer pH 7.1 containing 10 mM magnesium chloride. Under these conditions thermal melting begins at 38 degrees C and its complete at approximately 45 degrees C. NOE experiments do not permit a decision on the polarity of annealing (predicted to be parallel) for this particular pair of sequences.  相似文献   

2.
2D-NMR studies of the unnatural duplex alpha-d(TCTAAAC)-beta-d(AGATTTG).   总被引:4,自引:4,他引:0  
The unnatural oligonucleotide alpha-d(TCTAAAC) was synthesized and was found more resistant towards endonucleases than its beta-analog. 2D-NMR experiments allowed the assignment of all non-exchangeable aromatic and sugar protons except for the overlapping 5' -5" resonances, as well as the exchangeable imino protons of the parallel hybrid duplex alpha-d (TCTAAAC)-beta-d(AGATTTG). NMR studies show that the strength of the association between the alpha-strand and the beta parallel strand is equivalent to that between their anti-parallel complementary beta-analogs beta-d(CAAATCT) and beta-d(AGATTTG). NOE data provide evidence that both duplexes form stable right-helical duplexes with an anti-conformation on the glycosyl linkages and a Watson-Crick pairing. NOESY and COSY spectra allowed us to determine that alpha and beta deoxyriboses adopt a 3' -exo conformation.  相似文献   

3.
Preferential assembly of the tropomyosin heterodimer: equilibrium studies   总被引:3,自引:0,他引:3  
S S Lehrer  W F Stafford 《Biochemistry》1991,30(23):5682-5688
Thermal unfolding/refolding studies of the three tropomyosin dimers, alpha alpha, alpha beta, and beta beta, from chicken gizzard muscle were performed to explain the preferential assembly of alpha- and beta-tropomyosin subunits into heterodimers, alpha beta [Lehrer, S. S., & Qian, Y. (1989) J. Biol. Chem. 265, 1134]. Circular dichroism measurements showed that all three dimers unfolded in cooperative reversible transitions with T1/2 = 40.0 degrees C and delta H degrees = 162 kcal/mol for alpha alpha and with T1/2 = 42.6 degrees C and delta H degree = 98 kcal/mol for beta beta at 0.4-0.5 microM concentrations. Fluorescence measurements on pyrenyliodoacetamide-labeled tropomyosin showed that (i) excimer fluorescence decreases in parallel with unfolding of homodimers, (ii) at physiological temperature, heterodimers are formed from micromolar mixtures of homodimers over a period of minutes, and (iii) heterodimers unfold/refold with temperature without appreciable formation of homodimers. To understand the preferential formation of alpha beta, we calculated the concentrations of all species present as a function of temperature for equal total amounts of alpha and beta, using the measured thermodynamic constants of the unfolding/dissociation equilibria for alpha alpha and beta beta. Values for delta H degrees = 225 kcal/mol and T1/2 = 43 degrees C for unfolding of alpha beta at 0.5 microM concentration were obtained from the best fit of the calculations to the measured helical content vs temperature of alpha beta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Conformational stability and mechanism of folding of ribonuclease T1   总被引:5,自引:0,他引:5  
Urea and thermal unfolding curves for ribonuclease T1 (RNase T1) were determined by measuring several different physical properties. In all cases, steep, single-step unfolding curves were observed. When these results were analyzed by assuming a two-state folding mechanism, the plots of fraction unfolded protein versus denaturant were coincident. The dependence of the free energy of unfolding, delta G (in kcal/mol), on urea concentration is given by delta G = 5.6 - 1.21 (urea). The parameters characterizing the thermodynamics of unfolding are: midpoint of the thermal unfolding curve, Tm = 48.1 degrees C, enthalpy change at Tm, delta Hm = 97 kcal/mol, and heat capacity change, delta Cp = 1650 cal/mol deg. A single kinetic phase was observed for both the folding and unfolding of RNase T1 in the transition and post-transition regions. However, two slow kinetic phases were observed during folding in the pre-transition region. These two slow phases account for about 90% of the observed amplitude, indicating that a faster kinetic phase is also present. The slow phases probably result from cis-trans isomerization at the 2 proline residues that have a cis configuration in folded RNase T1. These results suggest that RNase T1 folds by a highly cooperative mechanism with no structural intermediates once the proline residues have assumed their correct isomeric configuration. At 25 degrees C, the folded conformation is more stable than the unfolded conformations by 5.6 kcal/mol at pH 7 and by 8.9 kcal/mol at pH 5, which is the pH of maximum stability. At pH 7, the thermodynamic data indicate that the maximum conformational stability of 8.3 kcal/mol will occur at -6 degrees C.  相似文献   

6.
Differential scanning calorimetric analysis was used as a probe of the conformational alteration in human alpha 2-macroglobulin (AM) upon its complex formation with methylamine and with the protease, human plasmin. The slow electrophoretic form of AM displayed a single thermal transition, characterized by a temperature midpoint (Tm) of 65.8 +/- 0.3 degrees, a calorimetric enthalpy (delta Hc) of 2,550 +/- 150 kcal/mol and a van't Hoff enthalpy (delta Hvh) of 140 kcal/mol. In the presence of sufficient methylamine to irreversibly disrupt the four thiol ester bonds in AM, a single thermal transition was obtained, characterized by a Tm of 62.8 +/- 0.3 degrees, a delta Hc of 1,700 +/- 100 kcal/mol, and a delta Hvh of 169 kcal/mol. These data suggest that a major conformational alteration is produced in AM upon complex formation with methylamine. When plasmin interacts with AM, the resulting thermogram displays Tm values for AM of 68-69 degrees and 77 degrees, also suggestive of a large conformational alteration in AM. However, this latter alteration appears dissimilar to the change induced by methylamine.  相似文献   

7.
The beta-complementary hexamer, beta-d[GTACGC], to the alpha-sequence, alpha-d[CATGCG], was synthesized by the phosphotriester method. The non-exchangeable proton assignments were obtained using 1D- and 2D-NMR techniques, including NOE, COSY and NOESY. The beta-strand exists as a random coil at 21 degrees C; however, at 4 degrees C, it forms an antiparallel self-recognition duplex annealing at positions 1-4. The beta-strand was annealed to the alpha-strand, and confirmation of complete annealing was obtained by detection and assignment of the six base pair imino protons in H2O/D2O solution at 21 degrees C. 1D-NOE experiments of the alpha, beta duplex d[alpha-(CATGCG) X beta-(GTACGC)] reveal that (i) it exists in aqueous solution in a conformation that belongs to the B family, (ii) it is 70 +/- 10% right-handed, (iii) the sugar-base orientations of the beta-strand are anti, and the deoxyribose units exist predominantly in the 2'-endo-3'-exo conformation. NOE measurements of the imino proton signals in the alpha, beta duplex reveal that the duplex exhibits parallel polarity.  相似文献   

8.
K S Bruzik  M D Tsai 《Biochemistry》1987,26(17):5364-5368
The phase-transition properties of sphingomyelins were investigated in detail with totally synthetic, chemically and stereochemically pure (2S,3R)-(N-stearoylsphingosyl)-1-phosphocholine (D-erythro-C18-SPM) (1) and the corresponding 2S,3S isomer (L-threo-C18-SPM) (2). Heating scans of an unsonicated dispersion of 1 right after hydration showed a main transition (I) at 44.7 degrees C (delta H = 6.8 kcal/mol). Upon incubation at 20-25 degrees C a second transition (II) appeared at 36.0 degrees C (delta H = 5.7 kcal/mol). The two gel phases were designated as G alpha and G beta phases, respectively. The G beta phase was also metastable and relaxed to a third gel phase (G gamma) upon incubation below 10 degrees C. Conversion of the G gamma phase to the liquid-crystalline phase occurred via two new endotherms at 33.4 degrees C (2.6 kcal/mol) (III) and 43.6 degrees C (8.0 kcal/mol) (IV) as well as a main transition at 44.7 degrees C (9.5 kcal/mol). Possible interpretations have been proposed to account for the observed phase transitions. The L-threo isomer 2 showed similar thermotropic behavior to dipalmitoylphosphatidylcholine (DPPC): a "main transition" at 44.2 degrees C (6.0 kcal/mol), a "pretransition" at 43.1 degrees C (1.8 kcal/mol), and upon incubation at 7 degrees C for 2 weeks, a very broad "subtransition" at ca. 35 degrees C. The results are substantially different from previous studies of sphingomyelins using mixtures of stereoisomers. Mixing of 1 with 2, 1 with DPPC, and 2 with DPPC removed the metastability of the gel phase and resulted in a single transition.  相似文献   

9.
M T Fisher 《Biochemistry》1991,30(41):10012-10018
The thermal stabilities of ferri- and ferrocytochrome b562 were examined. Thermally induced spectral changes, monitored by absorption and second-derivative spectroscopies, followed the dissociation of the heme moiety and the increased solvation of tyrosine residue(s) located in close proximity to the heme binding site. All observed thermal transitions were independent of the rate of temperature increase (0.5-2 degrees C/min), and the denatured protein exhibited partial to near-complete reversibility upon return to ambient temperature. The extent of renaturation of cytochrome b562 is dependent on the amount of time the unfolded conformer is exposed to temperatures above the transition temperature, Tm. All thermally induced spectra changes fit a simple two-state model, and the thermal transition was assumed to be reversible. The thermal transition for ferrocytochrome b562 yielded Tm and van't Hoff enthalpy (delta HvH) values of 81.0 degrees C and 137 kcal/mol, respectively. In contrast, Tm and delta HvH values obtained for the ferricytochrome were 66.7 degrees C and 110 kcal/mol, respectively. The estimated increase in the stabilization free energy at the Tm of ferricytochrome b562 following the one-electron reduction to the ferrous form, where delta delta G = delta Tm delta Sm [delta Sm = 324 cal/(K.mol), delta Tm = 14.3 degrees C] [Becktel, W. J., & Schellman, J. A. (1987) Biopolymers 26, 1859-1877], is 4.6 kcal/mol.  相似文献   

10.
Proton nuclear magnetic resonance has been used to examine the effect of both noncomplementary and G.U oppositions in the duplexes formed by the synthetic pentaribonucleotides CpApApUpG, CpApUpUpG, CpApGpUpG, and CpApCpUpG. The lack of any sigmoidal behavior in the chemical shift vs. temperature plots of the base protons in the individual pentaribonucleotides indicates that duplexes with noncomplementary base oppositions of the type: formula: (see text), (where X = A, U, G, or C) do not form. Variable temperature spectra of the mixture of CpApGpUpG and CpApUpUpG were recorded over the range of 70--10 degrees C. The chemical shift vs. temperature plot of the purine aromatic protons displayed sigmoidal curves. This demonstrated both duplex formation and the presence of a G.U. base pair. The average Tm of the duplex was found to be 23.4 +/- 2.0 degrees C. This is similar to that of the duplex formed by CpApUpG (24.0 +/- 1.0 degrees C) but less than the Tm of the following duplexes: CpApApUpG:CpApUpUpG (Tm = 28.5 +/- 2.1 degrees C), CpApGpUpG:CpApCpUpG (Tm = 38.4 +/- 0.6 degrees C) and CpApUpApUpG (Tm = 41.5 +/- 1.1 degrees C). The G.U base pair has a Tm (20.0 degrees C) significantly lower than the rest of the duplex (24 +/- 1 degree C) and is a region of local instability within the double helix. This 1H NMR study is the first to investigate both the formation and relative stability of an internal G.U. base pair neighboring regular Watson--Crick base pairs.  相似文献   

11.
N L Gershfeld 《Biochemistry》1989,28(10):4229-4232
Thermodynamic properties of bilayer assembly have been obtained from measurements of the solubility of the sodium salt of dimyristoylphosphatidylglycerol (DMPG) in water. The standard free energy of bilayer assembly delta G degree a is shown to be RT 1n Xs + zF psi 0 where Xs is the mole fraction of dissolved lipid, F is the Faraday constant, z is the valence of the counterion (Na+), and psi 0 is the electrical double-layer potential of the ionized bilayer. The function d 1n Xs/dT was found to be discontinuous at 24 degrees C, the gel-liquid-crystal transition temperature (Tm) for DMPG. This function was unaffected when solubilities were measured in 0.001 M NaCl solutions; thus, psi 0 is constant in the experimental temperature interval (4-40 degrees C). Using a value of psi 0 = -180 mV [Eisenberg et al. (1979) Biochemistry 18, 5213-5223], and the temperature dependence of delta G degrees a, values for delta H degrees a and delta S degree a at 24 degrees C were calculated for the gel and liquid-crystal states of DMPG. For the gel, delta H degrees a and T delta S a are -26.2 and 12.7 kcal/mol, respectively; for the liquid-crystal, delta H degrees a and T delta S degrees a are -19.2 and -5.7 kcal/mol, respectively. The calculated value for the latent heat of the gel-liquid-crystal transition is 7 kcal/mol, in agreement with calorimetric measurements.  相似文献   

12.
Optical melting transitions of the short DNA hairpins formed from the self-complementary DNA oligomers d[GGATACX4GTATCC] where X = A, T, G, or C measured in 100 mM NaCl are presented. A significant dependence of the melting transitions on loop sequence is observed and transition temperatures, tm, of the hairpins vary from 58.3 degrees C for the T4 loop hairpin to 55.3 degrees C for the A4 loop. A nearest-neighbor sequence-dependent theoretical algorithm for calculating melting curves of DNA hairpins is presented and employed to analyze the experimental melting transitions. Experimental melting curves were fit by adjustment of a single theoretical parameter, Fend(n), the weighting function for a hairpin loop comprised of n single-strand bases. Empirically determined values of Fend(n) provide an evaluation of the free-energy of hairpin loop formation and stability. Effects of heterogeneous nearest-neighbor sequence interactions in the duplex stem on hairpin loop formation were investigated by evaluating Fend(n) in individual fitting procedures using two of the published sets of nearest-neighbor stacking interactions in DNA evaluated in 100 mM NaCl and given by Wartell and Benight, 1985. In all cases, evaluated values of Fend(n) were obtained that provided exact theoretical predictions of the experimental transitions. Results of the evaluations indicate: (1) Evaluated free-energies of hairpin loop formation are only slightly dependent on loop sequences examined. At the transition temperature, Tm, the free-energy of forming a loop of four bases is approximately equal for T4, G4, or C4 loops and varies from 3.9 to 4.8 kcal/mole depending on the set of nearest-neighbor interactions employed in the evaluations. This result suggests, in light of the observed differences in stability between the T4, G4, and C4 loop hairpins, that sequence-dependent interactions between base residues of the loop are most likely not the source of the enhanced stability of a T4 loop.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Conformational changes of apo A-1, the principal apoprotein of human plasma high density lipoprotein, have been studied by differential scanning calorimetry and ultraviolet difference spectroscopy as a function of temperature, pH, concentration of apoprotein, and urea concentration. Calorimetry shows that apo A-1 (5 to 40 mg/ml, pH 9.2) undergoes a two-state, reversible denaturation (enthalpy = 64 +/- 8.9 kcal/mole), between 43--71 degrees (midpoint temperature, Tm = 54 degrees), associated with a rise in heat capacity (deltaCvd) of 2.4 +/- 0.5 kcal/mole/degrees C. Apo A-1 (0.2 to 0.4 mg/ml, pH 9.2) develops a negative difference spectrum between 42--70 degrees, with Tm = 53 degrees. The enthalpy (deltaH = 59 +/- 5.7 kcal/mole at Tm) and heat capacity change (2.7 +/- 0.9 kcal/mole/degrees C) in the spectroscopic experiments were not significantly different from the calorimetric values. Below pH 9 and above pH 11, the calorimetric Tm and deltaH of denaturation are decreased. In the pH range of reversible denaturation (6.5 to 11.8), delatH and Tm are linearly related, showing that the heat capacity change (ddeltaH/dT) associated with denaturation is independent of Tm. In urea solutions, the calorimetric Tm and deltaH of denaturation are decreased. At 25 degrees, apo A-1 develops a negative difference spectrum between 1.4 and 3 M urea. Fifty per cent of the spectral change occurs in 2.4 M urea, which corresponds to the urea concentration obtained by extrapolation of the calorimetric Tm to 25 degrees. In urea solution of less than 0.75 M there is hyperchromicity at 285 nm (delta epsilon = 264 in 0.75 M urea), indicating strong interaction of aromatic amino acid residues in the native molecule with the solvent. Spectrophotometric titration of apo A-1 shows that 6.6 of the 7 tyrosine groups of apo A-1 titrate at pH less than 11.9, with similar titration curves obtained in aqueous solutions and in 6 M urea. The free energy of stabilization (deltaG) of the native conformation of apo A-1 was estimated, (a) at 37 degrees, using the calorimetric deltaA and deltaCvd, and (b) at 25 degrees, by extrapolation of spectroscopic data to zero urea concentration. The values (deltaG (37 degrees) = 2.4 and deltaG (25 degrees) = 2.7 kcal/mole) are small compared to typical globular proteins, indicating that native apo A-1 has a loosely folded tertiary structure. The low values of deltaG reflect the high degree of exposure of hydrophobic areas in the native protein molecule. The loosely folded conformation of apo A-1 allows extensive binding of lipid, since this can involve both surface hydrophobic sites and hydrophobic areas exposed by a cooperative, low energy unfolding process.  相似文献   

14.
Thermodynamics of reversible monomer-dimer association of tubulin   总被引:1,自引:0,他引:1  
D L Sackett  R E Lippoldt 《Biochemistry》1991,30(14):3511-3517
The equilibrium between the rat brain tubulin alpha beta dimer and the dissociated alpha and beta monomers has been studied by analytical ultracentrifugation with use of a new method employing short solution columns, allowing rapid equilibration and hence short runs, minimizing tubulin decay. Simultaneous analysis of the equilibrium concentration distributions of three different initial concentrations of tubulin provides clear evidence of a single equilibrium characterized by an association constant, Ka, of 4.9 X 10(6) M-1 (Kd = 2 X 10(-7) M) at 5 degrees, corresponding to a standard free energy change on association delta G degrees = -8.5 kcal mol-1. Colchicine and GDP both stabilize the dimer against dissociation, increasing the Ka values (at 4.5 degrees C) to 20 X 10(6) and 16 X 10(6) M-1, respectively. Temperature dependence of association was examined with multiple three-concentration runs at temperatures from 2 to 30 degrees C. The van't Hoff plot was linear, yielding positive values for the enthalpy and entropy changes on association, delta S degrees = 38.1 +/- 2.4 cal deg-1 mol-1 and delta H degrees = 2.1 +/- 0.7 kcal mol-1, and a small or zero value for the heat capacity change on association, delta C p degrees. The entropically driven association of tubulin monomers is discussed in terms of the suggested importance of hydrophobic interactions to the stability of the monomer association and is compared to the thermodynamics of dimer polymerization.  相似文献   

15.
Thermally induced structural transition in the d(TTTTATAATAAA) d(TTTATTATAAAA) heteroduplex is characterized by UV-spectroscopy and differential scanning calorimetry. At low salt (less than 0.1 M) the occurrence of a cooperative transition in the lower temperature range, followed by a broad transition connected with small increase in absorbance is observed. At high salt (greater than or equal to 0.2 M) a single, monophasic transition appears. Linear dependence of the latter on log of salt concentration (dTm:dlogM = 14.2 degrees C) and of 1/Tm on log of oligomer concentration [derived therefrom delta H (v.H.) = 77.1 kcal/mole (duplex)] allows relating it to the melting of the heteroduplex helix. The non-cooperative transition, independent of oligomer concentration and similar to that of the single chain, was attributed to melting of short hairpin helices upon heteroduplex dissociation. Calorimetric enthalpy: 75.6 kcal/mole (duplex) proved significantly lower than predicted from known calorimetric data for poly[d(AT)] and poly d(A) X poly d(T).  相似文献   

16.
The three-dimensional structure of the duplex formed by the association of the unnatural oligonucleotide alpha-d(TCTAAACTC) covalently linked to an acridine derivative (m5Acr) with its natural and parallel complementary sequence beta-d(AGATTTGAG) was investigated by nuclear magnetic resonance spectroscopy and constrained molecular mechanics calculations. All the nonexchangeable and exchangeable resonances were assigned in this duplex. The structure was refined by using interproton distances determined by NOE measurements. The NOE values were converted into distances by using the complete 190 x 190 relaxation matrix. The unnatural duplex Acrm5-alpha-d(TCTAAACTC)-beta-d(AGATTTGAG) forms a parallel right-handed helix with Watson-Crick base pairing; the alpha and beta deoxyriboses adopt a 3'-exo conformation. The acridine moiety was found stacked up the C9-G9 base pair. The structure of the first seven base pairs of this duplex was found similar to that of the duplex alpha-d(TCTAAAC)-beta-d(AGATTTG), which we had already investigated [Lancelot, G., et al. (1989) Biochemistry 28, 7871-7878]. Since these structures were generated by using experimental NOE values obtained independently on macromolecules whose global correlation time was different (3.8 and 2.2 ns), we conclude that this comparison is a good test of the viability of our method to generate three-dimensional structures of oligonucleotides in solution. Starting from different initial conformations, we show that the NOE constraints allow one to reach the same final restrained conformation, taking into account implicitly the solvent effect.  相似文献   

17.
The difference spectra of lactate and malate dehydrogenase complexes with four native dyes containing vinylsulfonic and triazinic groups (light-resistant yellow 2KT, red-violet 2KT, etc.) were monitored in 0.1 M phosphate buffer pH 8.2 at 20 degrees C. The dissociation constants were calculated from the spectral data. The most stable complexes were lactate dehydrogenase--light-resistant yellow 2KT and malate dehydrogenase--light-resistant yellow 2KT ones. The values of delta H degree = 5.75 kcal/mole and standard thermodynamic parameters, delta G degree = -6.5 kcal/mole and delta S degree = 41.2 e. u., were calculated from the values of association constants for temperature dependence. The thermodynamic characteristics confirmed the key role of hydrophobic interactions in lactate dehydrogenase--reactive dye complex formation. All the dyes under study competitively inhibit lactate and malate oxidation by the corresponding dehydrogenases. The inhibition constants of both enzymes by the four dyes were determined at 20 degrees C in 0.1 M phosphate buffer pH 8.2. Light-resistant yellow 2KT appeared to be the most effective inhibitor of the enzymes.  相似文献   

18.
We determined the melting temperatures (Tm) and thermodynamic parameters of 15 RNA and 19 DNA hairpins at 1 M NaCl, 0.01 M sodium phosphate, 0.1 mM EDTA, at pH 7. All these hairpins have loops of four bases, the most common loop size in 16S and 23S ribosomal RNAs. The RNA hairpins varied in loop sequence, loop-closing base pair (A.U, C.G, or G.C), base sequence of the stem, and stem size (four or five base pairs). The DNA hairpins varied in loop sequence, loop-closing base pair (C.G, or G.C), and base sequence of the four base-pair stem. Thermodynamic properties of a hairpin may be represented by nearest-neighbor interactions of the stem plus contributions from the loop. Thus, we obtained thermodynamic parameters for the formation of RNA and DNA tetraloops. For the tetraloops we studied, a free energy of loop formation (at 37 degrees C) of about +3 kcal/mol is most common for either RNA or DNA. There are extra stable loops with delta G degrees 37 near +1 kcal/mol, but the sequences are not necessarily the same for RNA and DNA. The closing base pair is also important; changing from C.G to G.C lowered the stability of several tetraloops in both RNA and DNA. These values will be useful in predicting RNA and DNA secondary structures.  相似文献   

19.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

20.
Two simple methods for the synthesis of oligonucleotides bearing a N-(2-hydroxyethyl)phenazinium (Phn) residue at the 5'- and/or 3'-terminal phosphate groups are proposed. By forming complexes between a dodecanucleotide d(pApApCpCpTpGpTpTpTpGpGpC), a heptanucleotide d(pCpCpApApApCpA), and Phn derivatives of the latter, it is shown that the introduction of a dye at the end of an oligonucleotide chain strongly stabilizes its complementary complexes. The Tmax and the thermodynamic parameters (delta H, delta S, delta G) of complex formation were determined. According to these data, coupling of a dye with the 5'-terminal phosphate group is the most advantageous: delta G(37 degrees C) is increased by 3.59 +/- 0.04 kcal/mol compared to 2.06 +/- 0.04 kcal/mol for 3'-Phn derivatives. The elongation of the linker, which connects the dye to the oligonucleotide, from a dimethylene up to a heptamethylene usually leads to destabilization of the oligonucleotide complex. The complementary complex formed by the 3',5'-di-Phn derivative of the heptanucleotide was found to be the most stable among all duplexes investigated. Relative to the unmodified complex the increase in free energy was 4.96 +/- 0.04 kcal/mol. The association constant of this modified complex at 37 degrees C is 9.5 x 10(6) M-1, whereas the analogous value for the unmodified complex is only 3 x 10(3) M-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号