共查询到20条相似文献,搜索用时 15 毫秒
1.
The contents of ginsenosides in Panax ginseng not only vary in different parts of the root, but also exhibit yearly variation. In this study, an HPLC-MS method was established in order to simultaneously analyse ginsenosides Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1 and Rg2. The concentration of ginsenosides in the tap root and root fibre were compared and the yearly variations of nine ginsenosides elucidated. The results indicate that the total content of ginsenosides in the main root and the root fibre both attain a maximum level in the fourth year of growth, although the amount in the former is much higher than in the latter. The variation in the content of ginsenosides during a 2-6 year period suggests that cultivated P. Ginseng can be harvested after the fourth year. The current results will provide useful information for the quality control and good agricultural practice farming of ginseng. 相似文献
2.
A new HPLC-APCI/MS method for the identification of ginsenosides has been developed. The analyses were performed on a reversed-phase C18 column using a binary eluent (acetonitrile and water) under gradient conditions. Although APCI is a high-temperature evaporative process, HPLC-APCI/MS could effectively identify thermo-labile ginsenosides. The [M-H]- ions and the thermal degradation ions of ginsenosides could be clearly observed under negative and positive ion conditions, respectively, and these were used to identify the molecular masses, the aglycone structures and the sugar groups of ginsenosides. APCI/MS can provide more explicit information than ESI/MS for identifying and distinguishing ginsenosides. Using the HPLC-APCI/MS method, 35 ginsenosides were identified in Panax ginseng. 相似文献
3.
The response of understory species to elevated temperatures is not well understood but is important because these plants are highly sensitive to their growth conditions. Three-year-old plants of Panax quinquefolius, an understory herb endemic to the eastern deciduous forests of North America, were grown in a greenhouse at 25/20°C (day/night) or 30/25°C for one growing season and analyzed each month. Plants grown at high temperatures had an early onset of leaf senescence and therefore accumulated less carbon. From May to July, P. quinquefolius grown at high temperatures had decreased photosynthesis (52%), stomatal conductance (60%), and root and total biomass (33% and 28%, respectively) compared to plants grown at low temperatures. As P. quinquefolius prepared to overwinter, plants grown at high temperatures had less root biomass (53%) than plants in low temperatures. The amount of storage-root ginsenosides was unaffected by temperature, and differences in storage root size may explain why plants grown at high temperatures had greater concentrations of storage root ginsenosides (49%) than plants grown at low temperatures. Panax quinquefolius is clearly sensitive to a 5°C increase in temperature, and therefore other understory species may be negatively impacted by future increases in global temperature. 相似文献
4.
《植物生态学报》2017,41(9):995
Aims This study aimed to reveal how ginsenosides content in Panax ginseng varied spatially and the regulating roles of environmental factors.Methods Twenty eight P. ginseng samples were collected from Heilongjiang, Jilin and Liaoning provinces, and nine kinds of ginsenosides content in P. ginseng were measured. The one-way ANOVA was used to evaluate their spatial variations. The method of UPLC was employed to determine the content of nine kinds of ginsenosides in P. ginseng. The principal component analysis (PCA), correlation analysis (CA) and redundancy analysis (RDA) were used to analyze the relationship between ginsenosides content and ecological factors (including climate and soil factors).Important findings The results showed that the content of ginsenosides in P. ginseng from Jilin and Liaoning was similar, and higher than that in Heilongjiang. Precipitation was the most important climate factor affecting the contents of ginsenosides. High temperature and strong sunshine limited the content of ginsenosides. The analysis on ginsenosides and soil factors indicated that soil nitrogen content, Fe, K, organic matter, pH value, Mn, P, Zn all had significant influences on the content of ginsenosides. 相似文献
5.
The contents of five ginsenosides (Rg1, Re, Rb1, Rc and Rd) were measured in American ginseng roots collected from 10 populations grown in Maryland. Ginsenoside contents and compositions varied significantly among populations and protopanaxatriol (Rg1 and Re) ginsenosides were inversely correlated within root samples and among populations. The most abundant ginsenoside within a root and by population was either Rg1 or Re, followed by Rb1. Ginseng populations surveyed grouped into two chemotypes based on the relative compositions of Rg1 and Re. Four populations, including the control population in which plants were grown from TN and WI seed sources, contained roots with the recognized chemotype for American ginseng of low Rg1 composition relative to Re. The remaining 6 populations possessed roots with a distinctive chemotype of high relative Rg1 to Re compositions. Chemotype did not vary by production type (wild versus cultivated) and roots within a population rarely exhibited chemotypes different from the overall population chemotype. These results provide support for recent evidence that relative Rg1 to Re ginsenoside contents in American ginseng roots vary by region and that these differences are likely influenced more by genotype than environmental factors. Because the physiological and medicinal effects of different ginsenosides differ and can even be oppositional, our findings indicate the need for fingerprinting ginseng samples for regulation and recommended usage. Also, the High Rg1/Low Re chemotype discovered in MD could potentially be used therapeutically for coronary health based on recent evidence of the positive effects of Rg1 on vascular growth. 相似文献
6.
J T A PROCTOR M DORAIS H BLEIHOLDER A WILLIS H HACK V MEIER 《The Annals of applied biology》2003,143(3):311-317
The BBCH (Biologische Bundesanstalt, Bundessortenamt, Chemische Industrie) scale is used to describe the phonological growth stages of North American ginseng (Panax quinquefolius). Eight principal growth stages for germination and bud development, leaf development (crop canopy), root and perennating bud formation, peduncle elongation and inflorescence development, flowering and fruit set, development of fruit, ripening of fruit and senescence, and 42 secondary growth stages are described. A practical use of the scale is proposed with reference to the timing of application of agrochemicals for disease control. 相似文献
7.
Rg3 and Rh2 ginsenosides are primarily found in Korean red ginseng root (Panax ginseng C.A. Meyer) and valued for their bioactive properties. We quantified both Rh2 and Rg3 ginseng leaf and Rg3 from root extracts derived from North American ginseng (Panax quinquefolius). Quantification was obtained by application of HPLC with ion fragments detected using ESI-MS. Ginseng leaf contained 11.3+/-0.5 mg/g Rh2 and 7.5+/-0.9 mg/g Rg3 in concentrated extracts compared to 10.6+/-0.4 mg/g Rg3 in ginseng root. No detectable Rh2 was found in root extracts by HPLC, although it was detectable by ESI-MS analysis. Ginsenosides Rg3 and Rh2 were detected following hot water reflux extraction, but not from tissues extracted with 80% aqueous ethanol at room temperature. Therefore ginsenosides Rg3 and Rh2 are not naturally present in North American ginseng, but are products of a thermal process. Using ESI-MS analysis, it was found that formation of Rg3 and Rh2, among other compounds, were a function of heating time and were breakdown products of the more abundant ginsenosides Rb1 and Rc. Our findings that heat processed North American ginseng leaf is an excellent source of Rh2 ginsenoside is an important discovery considering that ginseng leaf material is obtainable throughout the entire plant cycle for recovery of valuable ginsenosides for pharmaceutical use. 相似文献
8.
小型生物反应器内人参不定根的人参皂苷累积 总被引:2,自引:0,他引:2
对小型生物反应器(3~10 L)培养人参不定根的生长和人参皂苷(Rg1、Re、Rb1)的累积规律,以及蔗糖浓度、初始接种量对其生长和人参皂苷累积的影响进行研究。结果表明:小型生物反应器内人参不定根的最佳收获周期为7周。初始接种量和蔗糖浓度影响生物反应器内人参不定根的生长和人参皂苷的累积,20或40 g/L蔗糖对人参不定根的生长和人参皂苷的累积优于60 g/L蔗糖;5和10 L生物反应器内最佳初始接种量分别为15和30g,其不定根的生长量分别为9.29和19.17 g,人参皂苷含量分别为5.16和4.58 mg/g。生物反应器内培养7周的人参与栽培4年的人参相比,人参皂苷Rg1和Re含量相差不大,但栽培人参中Rb1的含量远高于生物反应器中所培养的人参不定根。 相似文献
9.
Six new protopanaxadiol-type ginsenosides, named ginsenosides Ra(4) -Ra(9) (1-6, resp.), along with 14 known dammarane-type triterpene saponins, were isolated from the root of Panax ginseng, one of the most important Chinese medicinal herbs. The structures of the new compounds were determined by spectroscopic methods, including 1D- and 2D-NMR, HR-MS, and chemical transformation as (20S)- 3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (1), (20S)-3-O-[β-D-6-O-acetylglucopyranosyl-(1→2)-β-D-glucopyranosyl]-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (2), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (3), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (4), (20S)-3-O-{β-D-4-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (5), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (6). The sugar moiety at C(3) of the aglycone of each new ginsenoside is butenoylated or acetylated. 相似文献
10.
Certain ginsenosides, also known as triterpene glycosides, have been recently reported to have a characteristic effect on cultured intestinal and leukemia cell growth. Ginsenoside aglycones 20(S)-protopanaxadiol (PD), 20(S)-protopanaxatriol (PT), and ginsenoside Rh2 have been identified as having a strong effect on reducing cell viability. Furthermore, ginsenoside Rh2 is thought to be a rare ginsenoside not found in all ginseng products. Rather, Rh2 has been recently reported to be a breakdown product of thermal processing of North American ginseng. In this study, pure ginsenosides PD, PT, Rh2 standards and an enriched Rh2 fraction derived from ginseng leaf were tested in cultured Caco-2 cells for relative cytotoxic potency. PD and Rh2 LC50 were similar after 24 to 72 h, whereas a drop in PT LC50 occurred later at 48 and 72 h. Furthermore, PD and Rh2 affected membrane integrity as indicated by LDH secretion earlier than PT and the enriched Rh2 fraction (P < or = 0.05). Ginsenoside Rh2 showed the greatest (P < or = 0.05) build up of necrotic cells (18.3 +/- 0.1%) at the respective LC50 after 24 h and PD (21.3 +/- 0.3%) showed the largest effect after 44 h of exposure. The effect on apoptotic cells at 44 h of treatment were significantly different (P < or = 0.05) for Rh2 (21 +/- 0.4%), PD (14.6 +/- 0.1%), enriched Rh2 leaf fraction (9.9 +/- 0.6%), and PT (2.3 +/- 0.1%) treatments. Caco-2 caspase-3 activity was different between ginsenoside exposure; Rh2 (10.6 +/- 0.3 nM pNA) had the greatest (P < or = 0.05) activity followed by the enriched Rh2 leaf fraction (8.3 +/- 0.2 nM pNA), PT (7.3 +/- 0.3 nM pNA). The PD (4.8 +/- 0.04 nM pNA) treatment was similar to untreated cells (4.3 +/- 0.05 nM pNA) in caspase-3 activity. These results show variable bioactive response in cultured intestinal cell to specific ginsenosides and an enriched Rh2 North American ginseng extract which may be explained on basis of hydrophobic/hydrophilic balance. 相似文献
11.
American ginseng root (Panax quinquefolius) has a number of purported therapeutic effects, including inhibition of cancer cell proliferation. The ability of environmentally relevant heavy metals to alter ginseng effects on cancer cell growth was the subject of this study. A water extract of American ginseng root was applied alone or in combination with physiologically relevant doses of either lead (Pb) or arsenite to MCF-7 breast cancer cells in vitro and effects on cell proliferation were determined. Ginseng alone produced a significant dose-dependent inhibition of MCF-7 cell proliferation starting at 0.5 mg ml(-1). Treatment of MCF-7 cells with 2.5 microM arsenite significantly decreased MCF-7 cell proliferation (p < 0.01). When cells were treated with arsenite (1.25 or 2.5 microM) in combination with ginseng extract (0.5 mg ml(-1)), there was an apparent synergistic inhibition of cell proliferation. Treatment of MCF-7 breast cancer cells with 50 microM Pb significantly decreased cell proliferation relative to control (p < 0.01), and concomitant ginseng and Pb treatment did not lead to a further decrease. These results suggest that contaminant heavy metals, some of which have been detected in ginseng root extracts or commercial ginseng preparations, may alter the biological activity of ginseng. 相似文献
12.
An HPLC method has been developed for the simultaneous determination of the toxic Aconitum alkaloids, aconitine, mesaconitine and hypaconitine in blood and urine samples. The samples were initially subjected to solid phase extraction using Oasis MCX cartridges, and the alkaloids were separated on an XTerra RP18 column, gradient-eluted with acetonitrile: ammonium hydrogen carbonate buffer. Calibration curves were linear in the range 2.75-550 ng for aconitine and hypaconitine, and 3-600 ng for mesaconitine: the limit of detection was 0.1 ng (signal-to-noise ratio of 3) for each alkaloid. The described analysis proved to be sensitive, rapid and economical, and will be applied in the identification and determination of these alkaloids in forensic and therapeutic drug monitoring. 相似文献
13.
西洋参与人参中人参皂甙含量的比较 总被引:2,自引:0,他引:2
采用TLC和HPLC方法分析比较西洋参(Panax quinquefolium L.)、人参(P.ginseng C.A.Mey.)及其加工品红参(red ginseng),以及不同规格的西洋参中人参皂甙的含量。结果表明,西洋参中人参皂甙总量及人参二醇型皂甙的含量明显高于人参及红参,且含有1种人参及红参中未发现的未知人参皂甙Rx,但不含人参及红参中含有的Rf;人参中人参二醇型皂甙的含量高于人参三醇 相似文献
14.
The roots of Caulophyllum thalictroides, traditionally used for the treatment of menstrual difficulties and as an aid in childbirth, contain saponins, which are considered to be responsible for the uterine stimulant effects, together with teratogenic alkaloids. An HPLC method has been developed which permits the determination of the triterpene saponins in the plant and also the separation of four alkaloids. The best results were obtained with a C-12 stationary phase using ammonium acetate buffer (pH 8.0) and acetonitrile as mobile phase. Owing to their low UV absorbance, the saponins were detected by evaporative light scattering, whereas the alkaloids were monitored by UV at 310 nm. The identities of the compounds were confirmed in an LC-MS experiment. Different plant samples and commercial products have been analysed using the described method, and remarkable qualitative and quantitative variations were revealed. Comparing the daily uptake of total saponins, a difference of greater than 100-fold was observed within the various products; the alkaloid content on the other hand was more uniform. 相似文献
15.
A highly sensitive and specific assay method for cystamine using high-performance liquid chromatography has been developed. The method is based on postcolumn derivatization of cystamine with o-phthaladehyde in the presence of 2-mercaptoethanol and sodium hypochlorite. The separation of cystamine was achieved using a cation exchange column (ISC-05/S0504). The assay was linear over the concentration range of 2 to 200 pmol. For the application of this assay method to biological materials, the pretreatment with a cation exchange column (Dowex 50W X 8) was necessary to remove interfering o-phthaladehyde-reactive substances. Since cysteamine in biological materials was quantitatively converted to cystamine during these sampling procedures, this method was found to be suitable for assaying the cysteamine plus cystamine content in various organs and tissues. The cysteamine-cystamine content in various tissues of rat determined by the present assay method has been presented. 相似文献
16.
外源人参皂苷对人参种子萌发和幼根抗氧化酶活性的影响 总被引:5,自引:0,他引:5
研究不同浓度外源人参皂苷(人参总皂苷,人参二醇组皂苷,人参三醇组皂苷, Rb族,Rb3,Re共4种皂苷混合物和两种单体皂苷)对人参种子萌发,幼苗根长、鲜重,幼根中抗氧化酶活性和MDA含量的影响.结果表明:所测试人参皂苷对人参种子萌发、人参幼苗根长生长和幼根鲜重增加均具有抑制化感效应,且抑制程度均随处理浓度的升高而增强;对人参幼根中抗氧化酶活性方面,不同浓度人参总皂苷,人参二醇组皂苷,人参三醇组皂苷处理后,人参根系中SOD,POD和CAT活性均有明显提高,呈现出各酶活性随浓度升高而逐渐增强的效应;人参皂苷Rb族处理后,SOD活性在低中浓度处理时,与对照差别不大,中高浓度处理后低于对照,POD活性在中高浓度处理后显著提高,高浓度处理后活性降幅较大难以恢复到对照水平,CAT活性均低于对照;人参皂苷Rb3处理后,SOD活性均低于对照水平,POD活性在低浓度处理时与对照相当,中高浓度处理后显著低于对照水平,CAT活性逐渐降低,在低中浓度处理时略高于对照,高浓度处理后低于对照水平;人参皂苷Re处理后,SOD和POD活性均显著低于对照.人参幼根中MDA含量均随着处理浓度的增加而升高. 相似文献
17.
Linggai Cao Hao Wu He Zhang Quan Zhao Xue Yin Dongran Zheng Chuanwang Li Min-Jun Kim Pyol Kim Zheyong Xue Yu Wang Yuhua Li 《Biotechnology and bioengineering》2020,117(6):1615-1627
The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six β-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L−1. The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L−1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories. 相似文献
18.
E. V. Demidova O. V. Reshetnyak A. V. Oreshnikov A. M. Nosov 《Russian Journal of Plant Physiology》2006,53(1):134-140
The aim of the work was to study the growth characteristics of cultured cells of Panax japonicus var. repens, an endemic plant of the Primorski Krai of Russia, grown in laboratory bioreactors and to determine the content of basic ginsenosides under these conditions. An increase of the inoculum size of the culture produced higher biomass accumulation and economic coefficient but slightly reduced the specific growth rate. An increase in the auxin concentration in a medium by adding 2,4-D practically did not affect growth characteristics of the culture but significantly reduced the size of cell aggregates. In all treatments tested, all major ginsenosides (Rb1, Rc, Rb2, Rd, Rf, Rg1, and Re) were found in the culture. The total ginsenoside content was 2–3% per biomass dry weight. Meantime, ginsenosides of the Rg-series with protopanaxatriol as aglycone prevailed (70% of the total ginsenoside content). The culture conditions considerably affected the ratio of individual ginsenosides. In 2,4-D-containing medium, the preferential synthesis of Re ginsenoside was observed while both Rg1 and Re were synthesized in other treatments. 相似文献
19.
Determination of glucosamine in impure chitin samples by high-performance liquid chromatography 总被引:2,自引:0,他引:2
A simple, rapid, selective, and specific high-performance liquid chromatography (HPLC) method was developed to quantitate glucosamine, and its application for estimating purity of chitin was investigated. The chromatographic separation was achieved using a reversed-phase C8 column, pre-column derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) and ultraviolet detection (lambda=254 nm). The mobile phase consisted of CH3CN and H2O. The optimum conditions of acid hydrolysis of chitin (concentration of HCl, temperature, and heating time) was obtained by performing the orthogonal array design (OAD) procedure and the released glucosamine was determined by the above HPLC method. The accuracy of the method was checked by the standard addition technique. The method was found to be specific with good linearity, accuracy, precision, and well suited for quantitation of glucosamine and determination of the purity of chitin in biological materials and food products. 相似文献
20.
野生人参种子的超低温保存 总被引:2,自引:0,他引:2
人参(PanaxginsengC.A.Mey.)是珍贵的药用植物,由于长期过度采挖,资源枯竭,现存于我国东北地区的野生人参已处于濒临绝灭的边缘,被列为国家一级重点保护植物[1,2]。所以在加强其就地保护的同时,人参种质资源的迁地保存也是非常必要的。按... 相似文献