首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal changes in sedimentary nucleic acid concentrations in an abyssal locality of the northeastern Atlantic Ocean were investigated in relation to fluxes of nucleic acids produced in the photic layer. Sediment trap material, collected between 1996 and 1998 at depths of 1,000, 3,000, and 4,700 m, and sediment samples were analyzed for DNA and RNA content. Nucleic acid concentrations in the sediments were very high and displayed significant temporal changes, whereas mesoscale variability was low. DNA and RNA concentrations generally displayed opposite temporal patterns, which are likely to be dependent on the nature and characteristics of DNA and RNA molecules. Nucleic acid fluxes were high and displayed clear seasonal changes apparently coupled with seasonal pulses of primary production. However, while median values of DNA fluxes were relatively similar in all sediment traps, median values of RNA fluxes almost doubled from the 1,000- to the 4,700-m depth, suggesting differences in the metabolic activity of microbes associated with sinking particles. Significant relationships between DNA concentrations in the sediments and DNA fluxes and between RNA concentrations and RNA fluxes, indicating the presence of a clear pelagic-benthic coupling of particulate nucleic acids, were observed. The benthic system investigated was not steady state since we estimated that, from September 1996 to October 1998, nucleic acid concentration in the sediments decreased by about 165 mg of DNA m−2. Vertical profiles revealed a significant decrease in DNA concentration with depth in the sediments, reaching an asymptotic value of about 5 μg g−1. This DNA fraction constitutes a pool of potentially refractory DNA (accounting for 16 to 40% of the total DNA pool) that might be buried in the sediments.  相似文献   

2.
Downward fluxes of nucleic acids adsorbed onto settling particles play a key role in the supply of organic phosphorus and genetic material to the ocean interior. However, information on pelagic-benthic coupling, diagenesis, and processes controlling nucleic acid preservation in deep-sea sediments is practically nonexistent. In this study, we compared nucleic acid fluxes, sedimentary DNA and RNA concentrations, and the enzymatically hydrolyzable fraction of DNA in a bathyal continental margin (North Aegean Sea) and an open-sea system (South Aegean Sea) of the Eastern Mediterranean. The two systems displayed contrasting patterns of nucleic acid fluxes, which increased significantly with depth in the North Aegean Sea and decreased with depth in the South Aegean Sea. These results suggest that in continental margin and open-ocean systems different processes control the nucleic acid supply to the sea floor. Differences in nucleic acid fluxes were reflected by nucleic acid concentrations in the sediments, which reached extremely high values in the North Aegean Sea. In this system, a large fraction of DNA may be buried, as suggested by the large fraction of DNA resistant to nuclease degradation and by estimates of burial efficiency (ca. eight times higher in the North than in the South Aegean Sea). Overall, the results reported here suggest that the preservation of DNA in deeper sediment layers may be favored in benthic systems characterized by high sedimentation rates.  相似文献   

3.
Downward fluxes of nucleic acids adsorbed onto settling particles play a key role in the supply of organic phosphorus and genetic material to the ocean interior. However, information on pelagic-benthic coupling, diagenesis, and processes controlling nucleic acid preservation in deep-sea sediments is practically nonexistent. In this study, we compared nucleic acid fluxes, sedimentary DNA and RNA concentrations, and the enzymatically hydrolyzable fraction of DNA in a bathyal continental margin (North Aegean Sea) and an open-sea system (South Aegean Sea) of the Eastern Mediterranean. The two systems displayed contrasting patterns of nucleic acid fluxes, which increased significantly with depth in the North Aegean Sea and decreased with depth in the South Aegean Sea. These results suggest that in continental margin and open-ocean systems different processes control the nucleic acid supply to the sea floor. Differences in nucleic acid fluxes were reflected by nucleic acid concentrations in the sediments, which reached extremely high values in the North Aegean Sea. In this system, a large fraction of DNA may be buried, as suggested by the large fraction of DNA resistant to nuclease degradation and by estimates of burial efficiency (ca. eight times higher in the North than in the South Aegean Sea). Overall, the results reported here suggest that the preservation of DNA in deeper sediment layers may be favored in benthic systems characterized by high sedimentation rates.  相似文献   

4.
In this study, we compared three methods for extraction and quantification of RNA and DNA from marine sediments: (i) a spectrophotometric method using the diphenylamine assay; (ii) a fluorometric method utilizing selective fluorochromes (thiazole orange for total nucleic acids and Hoechst 33258 for DNA); and (iii) a high-pressure liquid chromatography (HPLC) method which uses a specific column to separate RNA and DNA and UV absorption of the nucleic acids for quantification. Sediment samples were collected in the oligotrophic Cretan Sea (eastern Mediterranean, from 40 to 1,540 m in depth) and compared to the distribution and composition of the benthic microbial assemblages (i.e., bacteria and microprotozoa). DNA concentrations measured spectrophotometrically and by HPLC were not significantly different, while fluorometric yields were significantly lower. Such differences appear mainly due to fact that the stain-DNA complex is strongly dependent on the DNA composition and structure. RNA concentrations determined by the three methods displayed some differences; fluorometric and spectrophotometric methods obtain RNA concentration by difference and therefore may be biased by DNA estimates. By contrast, the HPLC method provides independent assessments of RNA and DNA concentrations. We tentatively estimated the contribution of the detrital DNA to the total DNA pools in two ways. The two calculations provided quite similar results indicating that the majority of the DNA pool in the deep-sea sediments was detrital. Microbial RNA generally accounted for almost the entire sedimentary RNA pools below 100-m depth. RNA concentrations were found to decrease along the Cretan shelf and slope. The RNA/DNA ratio calculated by using fluorometric DNA concentrations was significantly correlated with values of sediment community oxygen consumption only below 100-m depth (dominated by the microbial biomass). These data suggest that the RNA/DNA ratio, based on fluorometric estimates of DNA, can be used as an indicator of benthic metabolic activity, but only when metazoan contribution to the microbial DNA is negligible.  相似文献   

5.
Growth of Antarctic benthic organisms is very slow due to temperature and food availability, and subtle differences in growth rate may be difficult to detect. Nucleic acid ratios (RNA/DNA, RNA/protein or total RNA concentration) are measures of protein synthesis potential and may be used to assess short-term growth rate in a range of marine organisms. We quantified nucleic acid ratios in the scallop Adamussium colbecki and the clam Laternula elliptica at five locations in the Ross Sea, Antarctica. We were able to detect species-specific, habitat-specific, and seasonal differences in nucleic acid ratios and related these to associated differences in primary productivity. By using nucleic acid ratios, future studies could relatively easily obtain a measure of growth rate from a multitude of locations with contrasting habitat characteristics, food availability and temperature regimes around the Antarctic continent. This would yield a unique understanding of spatial and temporal patterns in bivalve growth in this extreme environment.  相似文献   

6.
The acyclic chiral nucleic acid analogue, Glycol Nucleic Acid (GNA), displayed exceptional structural simplicity and atom economy while forming self-paired duplexes, using canonical Watson–Crick base pairing. We disclose here that the replacement of phosphodiester linker in GNA with somewhat rigid and shorter carbamate linker in Glycol Carbamate Nucleic Acid (GCNA) backbone allows unprecedented stability to the antiparallel self-paired duplexes. The R-GCNA oligomers were further found to form cross-paired antiparallel duplexes with cDNA and RNA following Watson–Crick base pairing. The stability of cross-paired GCNA:DNA and GCNA:RNA duplexes was higher than the corresponding DNA:DNA and DNA:RNA duplexes. The chiral (R) and (S) precursors were easily accessible from naturally occurring l-serine.  相似文献   

7.
Nucleic acid concentrations show large variations between different planktonic species. RNA concentration is much higher in phytoplankton than in zooplankton. DNA varies to a considerable extent, being five to six times higher in copepods than in cladocerans. In Daphnia hyalina, nucleic acid contents are proportional to dry weight during the whole life cycle except in newborn Daphnia where DNA concentration is abnormally high. Seasonal variations affect, to a large extent, nucleic acid concentrations. These results rule out the possibility of using nucleic acids as indicators of biomass in mixed planktonic populations.  相似文献   

8.
9.
Viral and prokaryote abundance were investigated in a deep-hypersaline anoxic basin of the Eastern Mediterranean Sea (DHAB Atalante basin at c. 3000 m depth). This system was compared with two nearby deep-sea sites characterized by oxic conditions. Viral abundance and virus to prokaryote abundance ratio in hypersaline anoxic sediments displayed values close to those reported in oxic sites. The analysis of vertical profiles of viral abundance in the Atalante basin revealed the lack of significant changes with depth in the sediment, suggesting that benthic viruses in these anoxic and hypersaline conditions are preserved or resistant to decay. The anoxic basin displayed also very high concentrations of labile organic components (proteins and lipids) and extracellular DNA. These findings suggest that the DHAB sediments represent a reservoir for long-term preservation of benthic viruses and nucleic acids.  相似文献   

10.
Xu L  Lv J  Ling L  Wang P  Song P  Su R  Zhu G 《Analytical biochemistry》2011,419(2):309-316
Nucleic acids were found to partition into the phenol phase during phenol extraction in the presence of guanidinium at certain concentrations under acidic conditions. The guanidinium-concentration-dependent nucleic acid partitioning patterns were analogous to those of the nucleic acid adsorption/partitioning onto silica mediated by guanidinium, which implied that phenol and silica interact with nucleic acids through similar mechanisms. A competition effect was observed in which the nucleic acids that had partitioned into the phenol phase or onto the silica solid phase could be recovered to the aqueous phases by potassium in a molecular weight–salt concentration-dependent manner (the higher molecular weight nucleic acids needed higher concentrations of potassium to be recovered, and vice versa). Methods were developed based on these findings to isolate total RNA from Escherichia coli. By controlling the concentrations of guanidinium and potassium salts used before phenol extraction or silica adsorption, we can selectively recover total RNA but not the high molecular weight genomic DNA in the aqueous phases. Genomic DNA-free total RNA obtained by our methods is suitable for RT-PCR or other purposes. The methods can also be adapted to isolate small RNAs or RNA in certain molecular weight ranges by changing the salt concentrations used.  相似文献   

11.
Molecular approaches that target the total DNA pool recovered from permanently anoxic marine ecosystems have revealed an extraordinary diversity of prokaryotes and unicellular eukaryotes. However, the presence of gene sequences contained within the extracellular DNA pool is still largely neglected. We have investigated the preservation, origin and genetic imprint of extracellular DNA recovered from permanently anoxic deep-sea sediments of the Black Sea. Despite high DNase activities, huge amounts of total extracellular DNA were found in both the surface and subsurface sediment layers, suggesting reduced availability of the extracellular DNA pool to nuclease degradation. The reduced degradation of the total extracellular DNA was confirmed by its low decay rate and the high accumulation in the deeper sediment layers. The copy numbers of 16S and 18S rDNA contained within the extracellular DNA pool in both the surface and subsurface sediment layers was very high, indicating that permanently anoxic sediments of the deep Black Sea are hot spots of preserved extracellular gene sequences. The extracellular DNA recovered from these sediment layers also contained highly diversified 18S rDNA sequences. These were not only representative of the major protistan lineages, but also of new very divergent lineages, branching as independent clades at the base of the tree. Our findings indicate that the extracellular DNA pool is a major archive of present/past eukaryotic gene sequences, and they highlight the importance of integrating molecular cell-oriented approaches with molecular analyses of the extracellular DNA pool, for a better assessment of microbial diversity and temporal changes in marine benthic ecosystems.  相似文献   

12.
13.
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at -30 degrees C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 microM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments.  相似文献   

14.
为研究玻璃粉在植物核酸提取中的应用,比较了玻璃粉颗粒大小、离液盐种类及浓度、pH等条件对玻璃粉吸附核酸的影响,得出玻璃粉吸附核酸的各种最佳条件。结果表明,普通玻璃粉吸附核酸能力强于硅胶和硅藻土,玻璃粉颗粒的直径以83 μm为佳,pH 4.0时吸附效果达到最大。提取DNA时,NaCl浓度应大于3 mol/L,而提取RNA时,异硫氰酸胍大于2 mol/L就能取得很好的效果,此外,在玻璃粉吸附RNA前,需要加入50%以上的无水乙醇才能更好地吸附。利用玻璃粉制作简易纯化柱,可用于植物组织核酸提取纯化,所提取的核酸纯度高、完整性好,可用于酶切、杂交和PCR等实验。与传统方法相比,采用玻璃粉简易离心柱提取植物核酸,效果好、环保、快速、经济。  相似文献   

15.
Nucleic acid contents of tissue were determined from field-caught Antarctic krill to determine whether they could be used as an alternative estimator of individual growth rates which can currently only be obtained by labour intensive on-board incubations. Krill from contrasting growth regimes from early and late summer exhibited differences in RNA-based indices. There was a significant correlation between the independently measured individual growth rates and the RNA?:?DNA ratio and also the RNA concentration of krill tissue, although the strength of the relationship was only modest. DNA concentration, on average, was relatively constant, irrespective of the growth rates. The moult stage did not appear to have a significant effect on the nucleic acid contents of tissue. Overall, the amount of both nucleic acids varied considerably between individuals. Nucleic acid-based indicators may provide information concerning the recent growth and nutritional status of krill and further experimentation under controlled conditions is warranted. They are, however, reasonably costly and time-consuming measurements.  相似文献   

16.
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at −30°C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 μM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments.  相似文献   

17.
Amelogenin, a matrix protein involved in biomineralization of enamel, can self-assemble to form nanospheres in a pH-dependent manner. Nucleic acids (single-stranded, double-stranded, and plasmid DNA, as well as RNA) could be co-precipitated with amelogenin, demonstrating a strong binding of nucleic acids to amelogenin. The amounts of co-precipitated nucleic acids were analyzed and binding levels upto 90 μg DNA/mg amelogenin was achieved. The co-precipitation could also be carried out in a bacterial cell homogenate, and no bacterial proteins were found in the amelogenin aggregates, suggesting specificity for nucleic acid binding. Dynamic light scattering showed that amelogenin nanosphere structure is maintained upon DNA binding with an upto 2.6 nm increase in diameter. The reported binding of nucleic acids to amelogenin can be explored practically for nucleic acid separation.  相似文献   

18.
The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 μg g [dry weight] of sediment−1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 μg g (dry weight) of sediment−1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 μg g (dry weight) of sediment−1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment−1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.  相似文献   

19.
New sensitive fluorochromes, PicoGreen and RiboGreen (MolecularProbes, Inc.), were used to detect ng ml-1 concentrations ofnucleic acids (RNA and DNA) in single Daphnia individuals ofall developmental stages. Nucleic acids were assayed by fluorescencewith a microplate reader using (i) RiboGreen (non-specific dye)and PicoGreen (DNA-specific dye) together and (ii) RiboGreenwith and without RNase. The two methods yield similar valuesfor DNA and RNA. The second method has the advantage of determiningboth RNA and DNA within a single sample aliquot, allowing maximumuse of available sample. In parthenogenically reproducing Daphniapulex, RNA and DNA concentrations were related to changes inmetabolic activity associated with moulting cycle and ontogeneticdevelopment. In juveniles, elevated DNA content was observedin the early postmoult, followed by an increase in RNA duringintermoult and premoult. RNA concentration peaked at the lateststages of embryonic development, followed by a gradual declineduring juvenile development, with the lowest values in adultfemales (eggs removed). Similarly, DNA concentrations were highestduring the early phase of postnatal development, decreasingwhen body size increased. Our results suggest that ontogeneticvariations have implications for the use of nucleic acids asa measure for growth in zooplankton and may provide useful insightsinto mechanisms of growth on the cellular level.  相似文献   

20.
R. Rosa  M. L. Nunes 《Hydrobiologia》2005,537(1-3):207-216
The present work describes the seasonal changes in nucleic acid concentrations and amino acid profiles in the muscle of juvenile Parapenaeus longirostris and their relation to growth and nutritional condition. RNA content varied significantly between seasons, being the highest values attained in spring and the lowest in winter (p < 0.05). Similar results were obtained with RNA:protein and RNA:DNA ratios. In respect to total amino acid content (TAA), a significant increase from winter to spring was observed (p < 0.05) and the major essential amino acids (EAA) were arginine, histidine and leucine. Within non-essential amino acids (NEAA) glutamic acid, aspartic acid, glycine and proline were dominant. From winter to spring, a significant variation in NEAA content occurred (26.8; p < 0.05), mainly due to the significant increase of glutamic acid (79.1) and serine (66.7) (p < 0.05). EAA content did not vary significantly between seasons (p > 0.05). In opposition, during this period a significant decrease in the free amino acid content (FAA) was observed (p < 0.05); a higher percentage of decrease was attained in free non-essential (FNEAA – 42.9) in comparison to free essential amino acids (FEAA – 40.2). The significant increase in RNA and TAA contents from winter to spring may be related with protein synthesis. On the other hand, the lowest values obtained in winter may be due to a reduction in feeding activity; in this period the muscle protein must be progressively hydrolysed, which is evident with the higher FAA content. The liberated amino acids enter FAA pool and become available for energy production. In conclusion, it was evident that the seasonal cycle in activities such as feeding and growth with nucleic acids and amino acid analyses was noticed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号