首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The aim of this study is to mathematically approximate the shape of the femoral articulating line and compare radiuses of condylar curves within and between males and females. Ten male and ten female participants were included in the study. Radiuses of medial and lateral condylar curves were calculated from the side view knee X-ray by original mathematical equation. Average radiuses of condylar curves were between 4.5 and 1.7 cm medially, and between 3.2 and 1.8 cm laterally, for 0 degrees and 90 degrees flexion contact point respectively. Males had longer curve radiuses of both condyles (p < 0.05). Differences turned out to be statistically insignificant after adjusting to body height. Even small changes in the joint geometry during lifetime could make a joint susceptible to osteoarthritis or injuries. Approximation of the radiuses of femoral condyle curves is a useful method in anthropometric, radiological and virtual calculations of the knee geometry, and other ellipsoidal structures in human body, like wrist, scull segments, dental arches, etc.  相似文献   

2.
The aim of our study was to develop a 3-D MR-based technique for the analysis of meniscal and femoral translations during flexion of the knee, and under the influence of antagonistic muscle forces in healthy subjects. In an open MR system, 5 knees were examined at 30 degrees and 90 degrees flexion using a T1-weighted 3-D gradient echo sequence. A force of 30 Newtons, first in the extending and then in the flexing direction, was applied to the distal lower leg. After three-dimensional reconstruction, the minimal distances between the centre of the tibial plateau and the posterior edge of the menisci and femoral condyles were determined. At 30 degrees flexion, the minimum distance for the meniscus was larger medially than laterally (23.2 +/- 1.8 mm vs. 16.2 +/- 3.3 mm), and this also applied to the condyles (25.1 +/- 1.5 vs. 19.0 +/- 3.0 mm). During flexion to 90 degrees, a posterior translation of 0.5 +/- 0.2 mm was observed for the lateral, and of 3.4 +/- 1.2 mm for the medial, meniscus. The condyles demonstrated a different posterior translation (lateral 2.2 +/- 0.56 mm; medial 1.8 +/- 1.9 mm). No obvious differences were found between extension and flexion muscle activity for the different positions of the knee. In the present study, a new 3-D technique is presented for the analysis of the femoral and meniscal translation at various positions of the knee, and under muscle activity. The results suggest different translation for the menisci and condyles.  相似文献   

3.
The aim of the present study was to evaluate retropatellar contact characteristics at different angles of flexion of the knee joint. To this end, 6 cadaveric legs were examined using pressure sensitive film (Fuji Prescale type "super low") at angles of flexion of 45 degrees, 60 degrees, 90 degrees and 120 degrees both in neutral rotation and 10 degrees internal and external rotation of the femur in the same knee joints. A force of 140 N was applied to both the vastus medialis and lateralis, and a comparison made with a medially and a laterally dominating muscle force. The contact areas decreased with increasing angles of flexion. The medially dominating muscle traction increased the contact area. Comparison between internal and external rotation revealed a decrease in contact area on internal rotation. The pressure measurements were comparable in all loading situations. Comparison between neutral and medial traction revealed significant differences in contact area, pressure and force. The influence of femoral rotation showed no significant difference. A comparison of the different angles of flexion revealed only few significant differences. To prevent the development of retropatellar arthrosis, maximum contact areas are necessary. The study has shown an advantage for medially dominating muscle traction, and external rotation of the femur.  相似文献   

4.
The aim of this study was to image tibio-femoral movement during flexion in the living knee. Ten loaded male Caucasian knees were initially studied using MRI, and the relative tibio-femoral motions, through the full flexion arc in neutral tibial rotation, were measured. On knee flexion from hyperextension to 120 degrees , the lateral femoral condyle moved posteriorly 22 mm. From 120 degrees to full squatting there was another 10 mm of posterior translation, with the lateral femoral condyle appearing almost to sublux posteriorly. The medial femoral condyle demonstrated minimal posterior translation until 120 degrees . Thereafter, it moved 9 mm posteriorly to lie on the superior surface of the medial meniscal posterior horn. Thus, during flexion of the knee to 120 degrees , the femur rotated externally through an angle of 20 degrees . However, on flexion beyond 120 degrees , both femoral condyles moved posteriorly to a similar degree. The second part of this study investigated the effect of gender, side, load and longitudinal rotation. The pattern of relative tibio-femoral movement during knee flexion appears to be independent of gender and side. Femoral external rotation (or tibial internal rotation) occurs with knee flexion under loaded and unloaded conditions, but the magnitude of rotation is greater and occurs earlier on weight bearing. With flexion plus tibial internal rotation, the pattern of movement follows that in neutral. With flexion in tibial external rotation, the lateral femoral condyle adopts a more anterior position relative to the tibia and, particularly in the non-weight bearing knee, much of the femoral external rotation that occurs with flexion is reversed.  相似文献   

5.
The object of this study is to develop a three-dimensional mathematical model of the patello-femoral joint, which is modelled as two rigid bodies representing a moving patella and a fixed femur. Two-point contact was assumed between the femur and patella at the medial and lateral sides and in the analysis, the femoral and patellar articular surfaces were mathematically represented using Coons' bicubic surface patches. Model equations include six equilibrium equations and eleven constraints: six contact conditions, four geometric compatibility conditions, and the condition of a rigid patellar ligament; the model required the solution of a system of 17 nonlinear equations in 17 unknowns, its response describing the six-degress-of-freedom patellar motions and the forces acting on the patella. Patellar motions are described by six motion parameters representing the translations and rotations of the patella with respect to the femur. The forces acting on the patella include the medial and lateral component of patello-femoral contact and the patellar ligament force, all of which were represented as ratios to the quadriceps tendon force. The model response also includes the locations of the medial and lateral contact points on the femur and the patella. A graphical display of its response was produced in order to visualize better the motion of the components of the extensor mechanism.Model calculations show good agreement with experimental results available from the literature. The patella was found to move distally and posteriorly on the femoral condyles as the knee was flexed from full extension. Results indicate that the relative orientation of the patellar ligament with respect to the patella remains unchanged during this motion. The model also predicts a patellar flexion which always lagged knee flexion.Our calculations show that as the angle of knee flexion increased, the lateral contact point moved distally on the femur without moving significantly either medially or laterally. The medial contact point also moved distally on the femur but moved medially from full extension to about 40° of knee flexion, then laterally as the knee flexion angle increased. The lateral contact point on the patella did not change significantly in the medial and lateral direction as the knee was flexed; however, this point moved proximally toward the basis of the patella with knee flexion. The medial contact point also moved proximally on the patella with knee flexion, and in a similar manner the medial contact point on the patella moved distally with flexion from full extension to about 40° of flexion. However, as the angle of flexion increased, the medial contact point did not move significantly in the medial-lateral direction.Model calculations also show that during the simulated knee extension exercise, the ratio of the force in the patellar ligament to the force in the quadriceps tendon remains almost unchanged for the first 30° of knee flexion, then decreases as the angle of knee flexion increases. Furthermore, model results show that the lateral component of the patello-femoral contact force is always greater than the medial component, both components increasing with knee flexion.  相似文献   

6.
The aim of the study was to estimate the tibiofemoral joint force in deep flexion to consider how the mechanical load affects the knee. We hypothesize that the joint force should not become sufficiently large to damage the joint under normal contact area, but should become deleterious to the joint under the limited contact area. Sixteen healthy knees were analyzed using a motion capture system, a force plate, a surface electromyography, and a knee model, and then tibiofemoral joint contact forces were calculated. Also, a contact stress simulation using the contact areas from the literature was performed. The peak joint contact forces (M +/- SD) were 4566 +/- 1932 N at 140 degrees in rising from full squat and 4479 +/- 1478 N at 90 degrees in rising from kneeling. Under normal contact area, the tibiofemoral contact stresses in deep flexion were less than 5 MPa and did not exceed the stress to damage the cartilage. The contact stress simulation suggests that knee prosthesis having the contact area smaller than 200 mm2 may be problematic since the contact stress in deep flexion would become larger than 21 MPa, and it would lead damage or wear of the polyethylene.  相似文献   

7.
The aim of this study was to quantify the tibio-femoral contact point (CP) locations in healthy and osteoarthritic (OA) subjects during a weight-bearing squat using stand-alone biplanar X-ray images.Ten healthy and 9 severe OA subjects performed quasi-static squats. Bi-planar X-ray images were recorded at 0°, 15°, 30°, 45°, and 70° of knee flexion. A reconstruction/registration process was used to create 3D models of tibia, fibula, and femur from bi-planar X-rays and to measure their positions at each posture. A weighted centroid of proximity algorithm was used to calculate the tibio-femoral CP locations. The accuracy of the reconstruction/registration process in measuring the quasi-static kinematics and the contact parameters was evaluated in a validation study.The quasi-static kinematics data revealed that in OA knees, adduction angles were greater (p<0.01), and the femur was located more medially relative to the tibia (p<0.01). Similarly, the average CP locations on the medial and lateral tibial plateaus of the OA patients were shifted (6.5±0.7 mm; p<0.01) and (9.6±3.1 mm; p<0.01) medially compared to the healthy group. From 0° to 70° flexion, CPs moved 8.1±5.3 mm and 8.9±5.3 mm posteriorly on the medial and lateral plateaus of healthy knees; while in OA joints CPs moved 10.1±8.4 mm and 3.6±2.8 mm posteriorly. The average minimum tibio-femoral bone-to-bone distances of the OA joints were lower in both compartments (p<0.01).The CPs in the OA joints were located more medially and displayed a higher ratio of medial to lateral posterior translations compared to healthy joints.  相似文献   

8.
Medio-lateral translation during knee flexion continues to raise controversy. Small population sizes, small joint flexion ranges, less-reliable measurement techniques and disparate experimental conditions led to inconsistent reports in the past. To study this subject with more accurate and reliable measurements, we carried out femur and tibia tracking in 22 intact cadaver knees during passive joint motion using a state-of-the-art surgical navigation system. Trackers with active light-emitting diodes were fixed onto the femur and tibia, and an instrumented pointer was used to digitize a number of anatomical landmarks. International recommendations were adopted for anatomical-based reference frame definitions and joint kinematic analysis. For the first time, knee joint translations were reported in both the femoral and tibial reference frames, and over a flexion/extension arc as large as 140°. During flexion, in the femoral reference frame, the center of the tibial plateau moved 4.8 ± 2.8mm medially when averaged over the specimens. In the tibial frame, the knee center moved 13.3 ± 5.7 mm laterally. The relative femoral-to-tibial medio-lateral translation was, on average over the specimens, nearly 20% of the width of the tibial plateau, and can be as large as 35%. Medio-lateral translation occurs in the natural normal knee joint.  相似文献   

9.
The knowledge of normal patellar tracking is essential for understanding the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13mm of the patella was measured at the early 80% of the activity and the patella slightly moved posteriorly by about 2mm at the last 20% of the activity. The path of cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorders.  相似文献   

10.
Patello-femoral disorders are often caused by changes of patello-femoral and/or tibio-femoral kinematics. However, until now there has been no quantitative in vivo technique, that is able to obtain 3D kinematics and contact areas of all knee compartments simultaneously on a non-invasive basis. The aim of this study was therefore to develop and apply a technique which allows for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint during different knee flexion angles and under neuromuscular activation patterns. One knee of each of the 10 healthy volunteers was examined in an open MR system under flexing isometric muscle activity at 30 degrees and 90 degrees. Three-dimensional kinematics and contact areas of the patello-femoral and tibio-femoral joints were analyzed by 3D image postprocessing. The reproducibility of the imaging technique yielded a coefficient of variation of 4.6% for patello-femoral, 4.7% for femoro-tibial displacement and 8.6% for contact areas. During knee flexion (30-90 degrees ), patella tilt (opened to medial) decreased (8.8+/-3.4 degrees vs. 4.6+/-3.1 degrees, p<0.05), while lateral patellar shift increased significantly (1.6+/-2.3mm vs. 3.4+/-3.0mm, p<0.05). Furthermore, a significant posterior translation and external rotation of the femur relative to the tibia was observed. Patello-femoral contact areas increased significantly in size (134+/-60mm(2) vs. 205+/-96 mm(2)) during knee flexion. This technique shows a high reproducibility and provides physiologic in vivo data of 3D kinematics and contact areas of the patello-femoral and the tibio-femoral joint during knee flexion. This allows for advanced in vivo diagnostics, and may help to improve therapy of patello-femoral disorders in the future.  相似文献   

11.
Bearing surfaces of total condylar knees which are designed with a high degree of conformity to produce low stresses in the polyethylene tibial insert may be overconstrained. This study determines femoral and tibial bearing surface geometries which will induce the least destructive fatigue mechanisms in the polyethylene whilst conserving the laxity of the natural knee. Sixteen knee designs were generated by varying four parameters systematically to cover the range of contemporary knee designs. The parameters were the femoral frontal radius (30 or 70 mm), the difference between the femoral and tibial frontal radii (2 or 10 mm), the tibial sagittal radius (56 or 80 mm) and the posterior-distal transition angle (-8 or -20 degrees), which is the angle at which the small posterior arc of the sagittal profile transfers to the larger distal arc. Rigid body analyses determined the anterior-posterior and rotational motions as well as the contact points during the stance phase of gait for the different designs. In addition, a damage function which accumulated the fluctuating maximum shear stresses was used to predict the susceptibility to delamination wear of the polyethylene (damage score). This study predicted that of the 16 designs, the knee with a frontal radius of 70 mm, a difference in femoral and tibial frontal radii of 2 mm, a tibial sagittal radius of 80 mm and a posterior distal transition angle of -20 degrees would satisfy the conflicting needs of both resistance to delamination wear and natural kinematics.  相似文献   

12.
BackgroundWhile several studies describe kinematics of healthy and osteoarthritic knees using the accurate imaging and computer modelling now possible, no systematic review exists to synthesise these data.MethodA systematic review extracted quantitative observational, quasi-experimental and experimental studies from PubMed, Scopus, Medline and Web of Science that examined motion of the bony or articular surfaces of the tibiofemoral joint during any functional activity. Studies using surface markers, animals, and in vitro studies were excluded.Results352 studies were screened to include 23 studies. Dynamic kinematics were recorded for gait, step-up, kneeling, squat and lunge and quasi-static squat, knee flexion in side-lying or supine leg-press. Kinematics were described using a diverse range of measures including six degrees of freedom kinematics, contact patterns or the projection of the femoral condylar axis above the tibia. Meta-analysis of data was not possible since no three papers recorded the same activity with the same measures. Visual evaluation of data revealed that knees with osteoarthritis maintained a more adducted position and showed less posterior translation of the lateral femoral condylar axis than healthy knees. Variability in activities and in recording measures produced greater variation in kinematics, than did knee osteoarthritis.ConclusionDifferences in kinematics between osteoarthritic and healthy knees were observed, however, these differences were more subtle than expected. The synthesis and progress of this research could be facilitated by a consensus on reference systems for axes and kinematic reporting.  相似文献   

13.
Knowledge of the coupled motions, which develop under compressive loading of the knee, is useful to determine which degrees of freedom should be included in the study of tibiofemoral contact and also to understand the role of the anterior cruciate ligament (ACL) in coupled motions. The objectives of this study were to measure the coupled motions of the intact knee and ACL-deficient knee under compression and to compare the coupled motions of the ACL-deficient knee with those of the intact knee. Ten intact cadaveric knees were tested by applying a 1600 N compressive load and measuring coupled internal-external and varus-valgus rotations and anterior-posterior and medial-lateral translations at 0 deg, 15 deg, and 30 deg of flexion. Compressive loads were applied along the functional axis of axial rotation, which coincides approximately with the mechanical axis of the tibia. The ACL was excised and the knees were tested again. In the intact knee, the peak coupled motions were 3.8 deg internal rotation at 0 deg flexion changing to -4.9 deg external rotation at 30 deg of flexion, 1.4 deg of varus rotation at 0 deg flexion changing to -1.9 deg valgus rotation at 30 deg of flexion, 1.4 mm of medial translation at 0 deg flexion increasing to 2.3 mm at 30 deg of flexion, and 5.3 mm of anterior translation at 0 deg flexion increasing to 10.2 mm at 30 deg of flexion. All changes in the peak coupled motions from 0 deg to 30 deg flexion were statistically significant (p<0.05). In ACL-deficient knees, there was a strong trend (marginally not significant, p=0.07) toward greater anterior translation (12.7 mm) than that in intact knees (8.0 mm), whereas coupled motions in the other degrees of freedom were comparable. Because the coupled motions in all four degrees of freedom in the intact knee and ACL-deficient knee are sufficiently large to substantially affect the tibiofemoral contact area, all degrees of freedom should be included when either developing mathematical models or designing mechanical testing equipment for study of tibiofemoral contact. The increase in coupled anterior translation in ACL-deficient knees indicates the important role played by the ACL in constraining anterior translation during compressive loading.  相似文献   

14.
In designing a posterior-stabilized total knee arthroplasty (TKA) it is preferable that when the cam engages the tibial spine the contact point of the cam move down the tibial spine. This provides greater stability in flexion by creating a greater jump distance and reduces the stress on the tibial spine. In order to eliminate edge loading of the femoral component on the posterior tibial articular surface, the posterior femoral condyles need to be extended. This provides an ideal femoral contact with the tibial articular surface during high flexion angles. To reduce extensor mechanism impingement in deep flexion, the anterior margin of the tibial articular component should be recessed. This provides clearance for the patella and patella tendon. An in vivo kinematic analysis that determined three dimensional motions of the femorotibial joint was performed during a deep knee bend using fluoroscopy for 20 subjects having a TKA designed for deep flexion. The average weight-bearing range-of-motion was 125 degrees . On average, TKA subjects experienced 4.9 degrees of normal axial rotation and all subjects experienced at least -4.4 mm of posterior femoral rollback. It is assumed that femorotibial kinematics can play a major role in patellofemoral kinematics. In this study, subjects implanted with a high-flexion TKA design experienced kinematic patterns that were similar to the normal knee. It can be hypothesized that forces acting on the patella were not substantially increased for TKA subjects compared with the normal subjects.  相似文献   

15.
A new device and method to measure rabbit knee joint angles are described. The method was used to measure rabbit knee joint angles in normal specimens and in knee joints with obvious contractures. The custom-designed and manufactured gripping device has two clamps. The femoral clamp sits on a pinion gear that is driven by a rack attached to a materials testing system. A 100 N load cell in series with the rack gives force feedback. The tibial clamp is attached to a rotatory potentiometer. The system allows the knee joint multiple degrees-of-freedom (DOF). There are two independent DOF (compression-distraction and internal-external rotation) and two coupled motions (medial-lateral translation coupled with varus-valgus rotation; anterior-posterior translation coupled with flexion-extension rotation). Knee joint extension-flexion motion is measured, which is a combination of the materials testing system displacement (converted to degrees of motion) and the potentiometer values (calibrated to degrees). Internal frictional forces were determined to be at maximum 2% of measured loading. Two separate experiments were performed to evaluate rabbit knees. First, normal right and left pairs of knees from four New Zealand White (NZW) rabbits were subjected to cyclic loading. An extension torque of 0.2 Nm was applied to each knee. The average change in knee joint extension from the first to the fifth cycle was 1.9 deg +/- 1.5 deg (mean +/- sd) with a total of 49 tests of these eight knees. The maximum extension of the four left knees (tested 23 times) was 14.6 deg +/- 7.1 deg, and of the four right knees (tested 26 times) was 12.0 deg +/- 10.9 deg. There was no significant difference in the maximum extension between normal left and right knees. In the second experiment, nine skeletally mature NZW rabbits had stable fractures of the femoral condyles of the right knee that were immobilized for five, six or 10 weeks. The left knee served as an unoperated control. Loss of knee joint extension (flexion contracture) was demonstrated for the experimental knees using the new methodology where the maximum extension was 35 deg +/- 9 deg, compared to the unoperated knee maximum extension of 11 deg +/- 7 deg, 10 or 12 weeks after the immobilization was discontinued. The custom gripping device coupled to a materials testing machine will serve as a measurement test for future studies characterizing a rabbit knee model of post-traumatic joint contractures.  相似文献   

16.
The load-bearing area in the knee joint   总被引:7,自引:0,他引:7  
Measurements were made of the location and size of the contact areas in cadaver knee joints, for a load of 150 Kgf applied for 5 sec down the long axis of the tibia. Results were obtained from a total of 4 knees, considering flexion angles from 0 to 120°. The methods used were to measure directly from castings of the joint cavity; and to calculate from measurements of radii of curvature and joint deflection. Average contact areas for lateral and medial condyles were 1·4 and 1·8 cm2 respectively. Areas for the medial condyle were greater than for the lateral condyle and also the areas diminished as flexion angle increased. The implications of the results to contact stresses, joint lubrication and ‘condylar replacement’ knee prosthesis design were discussed.  相似文献   

17.
Comparison of kinematics in the healthy and ACL injured knee using MRI   总被引:3,自引:0,他引:3  
Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal motion in the injured knee by mapping tibiofemoral contact. Eleven healthy subjects and 20 subjects with a unilateral ACL injury performed a leg-press against resistance. MRI scans of both knees at 15 degrees intervals from 0 degrees to 90 degrees of flexion were used to record the tibiofemoral contact pattern. The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau than the healthy knees, particularly in the lateral compartment. The tibiofemoral contact pattern of the loaded knees did not differ from the unloaded knees. The difference in the tibiofemoral contact pattern in the ACL injured knee was associated with more severe knee symptoms, irrespective of the passive anterior laxity of the knee.  相似文献   

18.
We studied the kinematics of the knee during weight-bearing active extension in 14 patients with medial osteoarthrosis (OA) and in 10 controls using dynamic radiostereometry. Between 50 degrees and 20 degrees of extension the OA knees showed decreased internal tibial rotation corresponding to less posterior displacement of the lateral femoral flexion facet center. The midpoint between the two tips of the tibial intercondylar eminence occupied a more posterior position within the range of motion analyzed. The observed changes were similar to those previously recorded in chronic tear of the anterior cruciate ligament. Patients with medial arthrosis of the knee joint show a specific and abnormal pattern of joint motion.  相似文献   

19.
In vivo tibiofemoral contact analysis using 3D MRI-based knee models   总被引:5,自引:0,他引:5  
This paper quantified the motion of the tibiofemoral contact points during in vivo weight bearing flexion using MRI- based 3D knee models and two orthogonal fluoroscopic images. The contact points on the medial and lateral tibial plateau were calculated by finding the centroid of the intersection of the tibial and femoral cartilage layers and by using the bony geometry alone. Our results indicate that the medial femoral condyle remains in the central portion of the tibial plateau and the lateral condyle translates posteriorly with increasing flexion. Using the bony contact model increased the total translation of the medial and lateral condyles by 250 and 55%, respectively, compared to the cartilage contact model. These results suggest that using the bony geometry alone may not accurately represent the articular surfaces of the knee. Articular cartilage geometry may have to be used to accurately quantify tibiofemoral contact.  相似文献   

20.
Knee osteoarthritis (OA) results in changes such as joint-space narrowing and osteophyte formation. Radiographic classification systems group patients by the presence or absence of these gross anatomical features but are poorly correlated to function. Statistical-shape modelling (SSM) can detect subtle differences in 3D-bone geometry, providing an opportunity for accurate predictive models. The aim of this study was to describe and quantify the main modes of shape variation which distinguish end-stage OA from asymptomatic knees. Seventy-six patients with OA and 77 control participants received a CT of their knee. 3D models of the joint were created by manual segmentation. A template mesh was fitted to all meshes and rigidly aligned resulting in a set of correspondent meshes. Principal Component Analysis (PCA) was performed to create the SSM. Logistic regression was performed on the PCA weights to distinguish morphological features of the two groups. The first 7 modes of the SSM captured >90% shape variation with 6 modes best distinguishing between OA and asymptomatic knees. OA knees displayed sub-chondral bone expansion particularly in the condyles and posterior medial tibial plateau of up to 10 mm. The model classified the two groups with 95% accuracy, 96% sensitivity, 94% specificity, and 97% AUC. There were distinct features which differentiated OA from asymptomatic knees. Further research will elucidate how magnitude and location of shape changes in the knee influence clinical and functional outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号