首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.

Background

Despite its insulin sensitizing effects, pioglitazone may induce weight gain leading to an increased risk of development of insulin resistance. A novel sodium glucose co-transporter 2 (SGLT2) inhibitor, canagliflozin, provides not only glycemic control but also body weight reduction through an insulin-independent mechanism. The aim of this study was to investigate the combined effects of these agents on body weight control and insulin sensitivity.

Methods

Effects of combination therapy with canagliflozin and pioglitazone were evaluated in established diabetic KK-Ay mice and prediabetic Zucker diabetic fatty (ZDF) rats.

Results

In the KK-Ay mice, the combination therapy further improved glycemic control compared with canagliflozin or pioglitazone monotherapy. Furthermore, the combination significantly attenuated body weight and fat gain induced by pioglitazone and improved hyperinsulinemia. In the ZDF rats, early intervention with pioglitazone monotherapy almost completely prevented the progressive development of hyperglycemia, and no further improvement was observed by add-on treatment with canagliflozin. However, the combination significantly reduced pioglitazone-induced weight gain and adiposity and improved the Matsuda index, suggesting improved whole-body insulin sensitivity.

Conclusions

Our study indicates that combination therapy with canagliflozin and pioglitazone improves insulin sensitivity partly by preventing glucotoxicity and, at least partly, by attenuating pioglitazone-induced body weight gain in two different obese diabetic animal models. This combination therapy may prove to be a valuable option for the treatment and prevention of obese type 2 diabetes.  相似文献   

2.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

3.
The Zucker obese (fa/fa) rat is a model of hypertrophic/hyperplastic obesity. These rats develop marked hyperinsulinemia, insulin resistance, and pancreatic beta-cell hyperplasia. In the present study, chronic (22 weeks) administration of the 17-ketosteroid, dehydroepiandrosterone (DHEA), to obese Zucker rats significantly decreased body weight, and retroperitoneal and parametrial fat pad weights. In addition, beta-cell hyperplasia was reduced as well as pancreatic insulin content. DHEA treatment of lean Zucker rats also reduced body weight, fat depot weight, pancreatic islet diameter, and pancreatic insulin content. These data indicate that DHEA treatment appears to inhibit insulin synthesis and beta-cell proliferation. Whether this is due to a direct effect on the pancreas or due to improvement of peripheral insulin sensitivity remains to be elucidated.  相似文献   

4.
We investigated the effect of subdiaphragmatic vagal deafferentation (SDA) on food intake, body weight gain, and metabolism in obese (fa/fa) and lean (Fa/?) Zucker rats. Before and after recovery from surgery, food intake and body weight gain were recorded, and plasma glucose and insulin were measured in tail-prick blood samples. After implantation of a jugular vein catheter, an intravenous glucose tolerance test (IVGTT) was performed, followed by minimal modeling to estimate the insulin sensitivity index. Food intake relative to metabolic body weight (g/kg(0.75)) and daily body weight gain after surgery were lower (P < 0.05) in SDA than in sham obese but not lean rats. Before surgery, plasma glucose and insulin concentrations were lower (P < 0.05) in lean than in obese rats but did not differ between surgical groups within both genotypes. Four weeks after surgery, plasma glucose and insulin were still similar in SDA and sham lean rats but lower (P < 0.05) in SDA than in sham obese rats. IVGTT revealed a downward shift of the plasma insulin profile by SDA in obese but not lean rats, whereas the plasma glucose profile was unaffected. SDA decreased (P < 0.05) area under the curve for insulin but not glucose in obese rats. The insulin sensitivity index was higher in lean than in obese rats but was not affected by SDA in both genotypes. These results suggest that elimination of vagal afferent signals from the upper gut reduces food intake and body weight gain without affecting the insulin sensitivity index measured by minimal modeling in obese Zucker rats.  相似文献   

5.
We determined the effect of 48-h elevation of plasma free fatty acids (FFA) on insulin secretion during hyperglycemic clamps in control female Wistar rats (group a) and in the following female rat models of progressive beta-cell dysfunction: lean Zucker diabetic fatty (ZDF) rats, both wild-type (group b) and heterozygous for the fa mutation in the leptin receptor gene (group c); obese (fa/fa) Zucker rats (nonprediabetic; group d); obese prediabetic (fa/fa) ZDF rats (group e); and obese (fa/fa) diabetic ZDF rats (group f). FFA induced insulin resistance in all groups but increased C-peptide levels (index of absolute insulin secretion) only in obese prediabetic ZDF rats. Insulin secretion corrected for insulin sensitivity using a hyperbolic or power relationship (disposition index or compensation index, respectively, both indexes of beta-cell function) was decreased by FFA. The decrease was greater in normoglycemic heterozygous lean ZDF rats than in Wistar controls. In obese "prediabetic" ZDF rats with mild hyperglycemia, the FFA-induced decrease in beta-cell function was no greater than that in obese Zucker rats. However, in overtly diabetic obese ZDF rats, FFA further impaired beta-cell function. In conclusion, 1) the FFA-induced impairment in beta-cell function is accentuated in the presence of a single copy of a mutated leptin receptor gene, independent of hyperglycemia. 2) In prediabetic ZDF rats with mild hyperglycemia, lipotoxicity is not accentuated, as the beta-cell mounts a partial compensatory response for FFA-induced insulin resistance. 3) This compensation is lost in diabetic rats with more marked hyperglycemia and loss of glucose sensing.  相似文献   

6.
Our objective was to determine if a cafeteria-type diet with increased fat content would block the decrease in insulin secretion induced by adrenalectomy in obese rats. Five week old Zucker (fa/fa) rats were adrenalectomized. One week later, half of the adrenalectomized groups, and age-matched, sham-operated animals were given a diet of 16% fat and 44% carbohydrate. Control animals were maintained on standard rat chow (4.6% fat and 49% carbohydrate). After 4 weeks on the diets, in vivo measurements included caloric intake, weight gain, plasma corticosterone, triglyceride, free fatty acids, and oral glucose tolerance tests. In vitro measurements included glucose-stimulated insulin secretion, glucose phosphorylating activity, islet triglyceride content, and fatty acid oxidizing activity of cultured islets. Generally, the cafeteria diet did not block the effects of adrenalectomy on in vitro insulin secretion parameters, even though in sham-operated animals weight gain and insulin resistance was induced by the diet in vivo. Adrenalectomy and the diet exerted independent effects on glucose phosphorylation and fatty acid oxidation in islets. In conclusion, adrenalectomy decreased the elevated insulin secretion in fa/fa rats. The failure of a cafeteria diet enriched in fat to block the adrenalectomy-mediated changes in B-cell function indicates the importance of glucocorticoids and centrally-mediated effects on insulin secretion and other metabolic parameters.  相似文献   

7.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

8.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

9.
In vivo studies confirmed that chlorogenic acid (CGA) improved glucose tolerance and mineral pool distribution in obese Zucker (fa/fa) rats. We found a significant decrease (P<.05) in postprandial blood glucose concentrations, which may have been due to an improved sensitivity to insulin. Impaired glucose tolerance and insulin resistance have been associated with differences in the hepatic mRNA expression of the spliced variants of the insulin receptor at exon 11. Spliced variants of the insulin receptor have not been studied in obese Zucker (fa/fa) rats, and no information exists about the effects of CGA in vivo as a possible insulin sensitizer. Thus, we studied the in vivo effect of CGA on plasma insulin concentrations during a glucose tolerance test, liver protein and DNA concentrations, the hepatic activity of glucose-6-phosphatase (G-6-PASE) and the mRNA expression of the two variants of the insulin receptor at exon 11. Zucker (fa/fa) rats were implanted with jugular vein catheters. Chlorogenic acid was administered (5 mg/kg body weight per day) for 3 weeks via intravenous infusion. In the CGA-treated group, areas under the curve (AUC) for blood glucose and plasma insulin improved (P<.005), and the protein and DNA concentrations in the liver increased (P<.05). No significant differences (P>.05) were found between groups for the hepatic G-6-PASE activity. The insulin receptor exon 11(+) and the exon 11(-) variants were expressed in the liver of Zucker (fa/fa) rats without significant changes (P>.05). Chlorogenic acid improved some cellular mechanisms that are stimulated by insulin.  相似文献   

10.
Interleukin-15 (IL-15) is a proinflammatory cytokine with multifunctional effects outside the immune system. Previous studies have indicated that treatment of normal rats with IL-15 reduces white adipose tissue (WAT) mass, but it was unclear if these effects were direct or indirect. In the present study, the effects of IL-15 on WAT mass and lipid metabolism were studied in two genetic models of obesity: the leptin receptor-negative fa/fa Zucker rat and the leptin-deficient ob/ob mouse. Lean Zucker rats, lean (+/+), and obese mice (ob/ob) responded to IL-15 with reductions in WAT mass and lipoprotein lipase activity (LPL), with no decreases in food intake. In contrast, fa/fa Zucker rats did not respond to IL-15 administration by any of the above measures of fat mass or lipid metabolism. In addition, ribonuclease protection assays (RPAs) were used to demonstrate that all three subunits (gamma(c), beta and alpha) of the IL-15 receptor complex are expressed by rat and mouse WAT, suggesting that the effects of IL-15 on adipose tissue metabolism could be direct. Additionally, the fa/fa rats expressed 84% lower levels of the gamma(c) signaling receptor subunit than lean Zucker rats, suggesting this decrease may play a role in the lack of adipose tissue response to IL-15 in the fa/fa genotype and lending further support for a direct action of IL-15 on adipose tissue.  相似文献   

11.
Lipogenesis from U(14C) lactate was studied in hepatocytes isolated from obese Zucker rats (fa/fa) their lean littermates (Fa/?) and Sprague Dawley rats. The distribution of radioactive carbon between the glycerol and the fatty acid moieties of the acylglycerols were studied. Radioactive lactate was better utilized for glycerol formation than it was for fatty acid formation in the obese rats. However, when oleate was added to the hepatocytic incubation medium, radioactive lactate was preferentially incorporated into the fatty acid moiety of the acylglycerols.  相似文献   

12.
Fibrates and glitazones are two classes of drugs currently used in the treatment of dyslipidemia and insulin resistance (IR), respectively. Whereas glitazones are insulin sensitizers acting via activation of the peroxisome proliferator-activated receptor (PPAR) gamma subtype, fibrates exert their lipid-lowering activity via PPARalpha. To determine whether PPARalpha activators also improve insulin sensitivity, we measured the capacity of three PPARalpha-selective agonists, fenofibrate, ciprofibrate, and the new compound GW9578, in two rodent models of high fat diet-induced (C57BL/6 mice) or genetic (obese Zucker rats) IR. At doses yielding serum concentrations shown to activate selectively PPARalpha, these compounds markedly lowered hyperinsulinemia and, when present, hyperglycemia in both animal models. This effect relied on the improvement of insulin action on glucose utilization, as indicated by a lower insulin peak in response to intraperitoneal glucose in ciprofibrate-treated IR obese Zucker rats. In addition, fenofibrate treatment prevented high fat diet-induced increase of body weight and adipose tissue mass without influencing caloric intake. The specificity for PPARalpha activation in vivo was demonstrated by marked alterations in the expression of PPARalpha target genes, whereas PPARgamma target gene mRNA levels did not change in treated animals. These results indicate that compounds with a selective PPARalpha activation profile reduce insulin resistance without having adverse effects on body weight and adipose tissue mass in animal models of IR.  相似文献   

13.
Obese Zucker rats (fa/fa) are characterized by inadequate leptin signaling caused by a mutation in the leptin receptor gene. Obese Zucker females are infertile and hyporesponsive to the inductive effects of ovarian hormones on sexual behaviors. Leptin treatment reverses aspects of reproductive dysfunction due to perturbations in energy balance in other animal models. Our first experiment tested the hypothesis that intracerebroventricular (icv) leptin administration would enhance the display of sexual behaviors in obese Zucker females. A second experiment compared lean and obese Zucker females' responses to leptin, during fed and fasted conditions. Ovariectomized (OVX) Zucker rats were implanted with lateral ventricular cannulae. In Experiment 1, fasted, obese females received estradiol benzoate, progesterone, and icv injections of 3, 18, or 36 microg murine leptin or vehicle. Leptin administration reduced food intake, but did not enhance sexual behaviors. In Experiment 2, steroid-replaced, OVX lean and obese females (from a different source than those in Experiment 1) received icv injections of vehicle or 3 or 36 microg leptin under fed and fasted conditions. Leptin treatment reduced food intake and weight gain in the fed, but not the fasted, condition in both genotypes. Sexual receptivity and locomotion were not affected, but icv leptin injections reduced proceptive behaviors in ad libitum-fed rats. These data confirm previous reports that centrally administered leptin decreases food intake and weight gain in obese Zucker rats; results from Experiment 2 suggest that lean and obese females are similarly responsive to these actions of leptin. Contrary to our hypothesis, leptin treatment did not stimulate sexual behaviors; rather, the hormone appears to inhibit the display of sexual proceptivity in ad libitum-fed lean and obese Zucker female rats.  相似文献   

14.
Although the rat is usually not considered to be sensitive to photoperiod, under some experimental conditions photoperiod responses are unmasked. In addition, we have observed photoperiod-induced changes in body weight gain in lean and obese Zucker rats. In this experiment, body mass, food intake, body composition, brown adipose tissue (BAT) thermogenic state, and blood concentrations of corticosterone, insulin, and glucose were evaluated under one of two lighting conditions: a short (10 h light: 14 h dark) or a long (14 h light: 10 h dark) photoperiod. Plasma corticosterone and glucose concentrations measured under fasting conditions were unaffected by photoperiod in either genotype. The amount of BAT mitochondrial protein isolated was less in long photoperiod rats. BAT mitochondrial GDP binding was unaffected by photoperiod in the lean rats, but tended to be lower in long photoperiod obese rats than in short photoperiod obese rats. Although, photoperiod had no effect on daily food intake of rats exposed to the short versus long photoperiod, body mass was heaviest in obese rats raised in long photoperiod. Plasma insulin was increased in both lean and obese rats in long photoperiod. In addition, fat storage appeared to shift to internal depots in the lean rats exposed to long photoperiod. Our data demonstrate that photoperiod does have an effect on male Zucker rats with respect to body weight and fat distribution, with the obese rats being more sensitive to changes in photoperiod than the lean rats.  相似文献   

15.
Objective: This study examined the effects of topiramate (TPM), a novel neurotherapeutic agent reported to reduce body weight in humans, on the components of energy balance in female Zucker rats. Research Methods and Procedures: A 2 × 3 factorial experiment was performed in which two cohorts of Zucker rats differing in their phenotype (phenotype: lean, Fa/?; obese, fa/fa) were each divided into three groups defined by the dose of TPM administered (dose: TPM 0, vehicle; TPM 15, 15 mg/kg; TPM 60, 60 mg/kg). Results: The reduction in body weight gain induced by TPM in both lean and obese rats reflected a decrease in total body energy gain, which was more evident in obese than in lean rats. Whereas TPM administration did not influence the intake of digestible energy in lean rats, it induced a reduction in food intake in obese animals. In lean, but not in obese rats, apparent energy expenditure (as calculated by the difference between energy intake and energy gain) was higher in rats treated with TPM than in animals administered the vehicle. The low dose of TPM decreased fat gain (with emphasis on subcutaneous fat) without affecting protein gain, whereas the high dose of the drug induced a reduction in both fat and protein gains. The effects of TPM on muscle and fat depot weights were representative of the global effects of TPM on whole body fat and protein gains. The calculated energetic efficiency (energy gain/energy intake) was decreased in both lean and obese rats after TPM treatment. TPM dose independently reduced hyperinsulinemia of obese rats, but it did not alter insulinemia of lean animals. Discussion: The present results provide sound evidence for the ability of TPM to reduce fat and energy gains through reducing energetic efficiency in both lean and obese Zucker rats.  相似文献   

16.
TSE, ELIZABETH O, FRANCINE M GREGOIRE, BRIGITTE REUSENS, CLAUDE REMACLE, JOSEPH J HOET, PATRICIA R JOHNSON, JUDITH S STERN. Changes of islet size and islet size distribution resulting from protein malnutrition in lean (Fa/Fa) and obese (fa/fa) Zucker rats. Potential alterations in islet size and islet size distribution resulting from protein malnutrition were studied in lean (Fa/Fa) and obese (fa/fa) Zucker rats. The purpose was to investigate whether the distribution of enlarged islets in obese rats was altered by low-protein feeding. Four-week-old, male, lean and obese Zucker rats were fed either a diet containing 20% (w/w) protein (control diet) or a diet containing 5% (w/w) protein (low-protein diet) for 3 weeks. Pancreata were dissected at autopsy and immunostained for insulin. Islet size and distribution were determined by morphometric analysis. Body-weight gain, food intake, and serum insulin and glucose were also measured. After 3 weeks on the diets, serum insulin was significantly lower in both lean (-75%) and obese (-54%) rats fed low protein compared with that in controls. However, obese rats were still hyperinsulinemic compared with lean rats. Protein malnutrition resulted in a shift in distribution of islets to smaller size both in lean and in obese rats, with an increase in the population of small islets (100 μm2) and a decrease in the population of large islets (>20,000 μ;m2). In lean and obese rats fed low protein, β-cell weight was significantly lower, B cell volume fraction tended to decrease, and islet number per section area was significantly elevated when compared with controls. Taken together, these results show that protein deficiency alters the endocrine pancreas in both lean and obese Zucker rats. Although the decrease in islet size and the shift in distribution to smaller islets most likely contribute to the decrease in serum insulin concentration, these changes appear insufficient to normalize hyperinsulinemia in the obese Zucker rat.  相似文献   

17.
To test whether oleoyl-estrone plus a hyperlipidic diet affects body weight in Zucker fa/fa rats, 13-week-old male Zucker obese (fa/fa) rats initially weighing 440-470 g were used. They were fed for 15 days with a powdered hyperlipidic diet (16.97 MJ/kg metabolizable energy) in which 46.6% was lipid-derived and 16.1% was protein-derived energy and containing 1.23 +/- 0.39 μmol/kg of fatty-acyl esters of estrone. This diet was supplemented with added oleoyl-estrone to produce a diet with 33.3 μmol/kg of fatty-acyl estrone. Oral administration of oleoyl-estrone in a hyperlipidic diet (at a mean dose of 0.5 μmol. kg(-1).d(-1)) resulted in significant losses of fat, energy and, ultimately, weight. Treatment induced the maintenance of energy expenditure combined with lower food intake, creating an energy gap that was filled with internal fat stores while preserving body protein, in contrast with the marked growth of controls fed the hyperlipidic diet. Treatment of genetically obese rats with a hyperlipidic diet containing additional oleoyl-estrone resulted in the loss of fat reserves with scant modification of other metabolic parameters, except for lower plasma glucose and insulin levels. The results agree with the postulated role of oleoyl-estrone as a ponderostat signal.  相似文献   

18.
In this study, we measured the ghrelin, leptin, and insulin variations in lean and obese Zucker fa/fa rats during the acute phase of body weight gain. At 2 months of age, plasma insulin and leptin concentrations in fa/fa rats were, respectively, 470% and 3700% higher than in lean rats (p <0.0001). Plasma ghrelin was significantly lower (-24.6%; p <0.02) than in lean rats. At 6 months of age, ghrelin increased in both genotypes but the difference was no more significant. The inverse correlations existing between ghrelin and either body weight (BW), insulin or leptin at 2 months of age were no more observable in 6-month-old rats. At 6 months of age, the lean rats had the same body weight as the 2-month-old obese rats. In these body weight-matched rats, ghrelin was not correlated with BW but it remained negatively correlated with insulin and leptin. At the same body weight, obese rats had a much lower plasma ghrelin than lean rats (717+/-42 vs. 1754+/-83 pg/ml; p <0.0001). These data indicate that body composition rather than body weight is the primary factor for the down-regulation of the ghrelin system. This down-regulation constitutes a mechanism of defense of the organism against the development of obesity at least during the first part of life.  相似文献   

19.
Perfusion of CNS intact pancreases with 200 mg/dl glucose with concomitant lateral hypothalamic area (LHA) stimulation significantly inhibited insulin secretion both in normal and obese rats. Sprague-Dawley, Zucker lean (FaFa) and Zucker obese (fafa) rats all responded in a similar manner, suggesting a general effect unrelated to metabolic state. Insulin secretion during mins 25-40 of perfusion was inhibited in Sprague Dawley, lean Zucker and obese Zucker rats by 31%, 42% and 33%, even though LHA stimulation took place from mins 20-25. Thus, the duration of inhibition was greater than the period of LHA stimulation, indicating that this pathway can induce prolonged changes in the responsiveness of the pancreas. The data presented in this study demonstrate that LHA stimulation, in the absence of humoral factors, results in a direct CNS-mediated suppression of insulin secretion which is relatively long lasting. This effect may illustrate a basic control mechanism by the CNS to regulate the endocrine pancreas.  相似文献   

20.
Activators of peroxisome proliferator activated receptors (PPARs) are effective drugs to improve the metabolic abnormalities linking hypertriglyceridemia to diabetes, hyperglycemia, insulin-resistance, and atherosclerosis. We compared the pharmacological profile of a PPARalpha activator, fenofibrate, and a PPARgamma activator, rosiglitazone, on serum parameters, target gene expression, and body weight gain in (fa/fa) fatty Zucker rats and db/db mice as well as their association in db/db mice. Fenofibrate faithfully modified the expression of PPARalpha responsive genes. Rosiglitazone increased adipose tissue aP2 mRNA in both models while increasing liver acyl CoA oxidase mRNA in db/db mice but not in fatty Zucker rats. Both drugs lowered serum triglycerides yet rosiglitazone markedly increased body weight gain while fenofibrate decreased body weight gain in fatty Zucker rats. KRP 297, which has been reported to be a PPARalpha and gamma co-activator, also affected serum triglycerides and insulin in fatty Zucker rats although no change in body weight gain was noted. These results serve to clearly differentiate the metabolic finality of two distinct classes of drugs, as well as their corresponding nuclear receptors, having similar effects on serum triglycerides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号