首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is the cause of the familial VHL disease and most sporadic renal clear-cell carcinomas (RCC). pVHL has been shown to play a role in the destruction of hypoxia-inducible factor alpha (HIF-alpha) subunits via ubiquitin-mediated proteolysis and in the regulation of fibronectin matrix assembly. Although most disease-causing pVHL mutations hinder the regulation of the HIF pathway, every disease-causing pVHL mutant tested to date has failed to promote the assembly of the fibronectin matrix, underscoring its potential importance in VHL disease. Here, we report that a ubiquitin-like molecule called NEDD8 covalently modifies pVHL. A nonneddylateable pVHL mutant, while retaining its ability to ubiquitylate HIF, failed to bind to and promote the assembly of the fibronectin matrix. Expression of the neddylation-defective pVHL in RCC cells, while restoring the regulation of HIF, failed to promote the differentiated morphology in a three-dimensional growth assay and was insufficient to suppress the formation of tumors in SCID mice. These results suggest that NEDD8 modification of pVHL plays an important role in fibronectin matrix assembly and that in the absence of such regulation, an intact HIF pathway is insufficient to prevent VHL-associated tumorigenesis.  相似文献   

2.
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome caused by germline mutations of the VHL tumour suppressor gene. The VHL gene product, pVHL, forms multiprotein complexes that contain elongin B, elongin C and Cul-2, and negatively regulates hypoxia-inducible mRNAs. pVHL is suspected to play a role in ubiquitination given the similarity of elongin C and Cul-2 with Skp1 and Cdc53, respectively. pVHL can also interact with fibronectin and is required for the assembly of a fibronectin matrix. Finally, pVHL, at least indirectly, plays a role in the ability of cells to exit the cell cycle. Thus, pVHL is a tumour suppressor protein that regulates angiogenesis, extracellular matrix formation and the cell cycle.  相似文献   

3.
The tumor suppressor function of the von Hippel-Lindau protein (pVHL) has previously been linked to its role in regulating hypoxia-inducible factor levels. However, VHL gene mutations suggest a hypoxia-inducible factor-independent function for the N-terminal acidic domain in tumor suppression. Here, we report that phosphorylation of the N-terminal acidic domain of pVHL by casein kinase-2 is essential for its tumor suppressor function. This post-translational modification did not affect the levels of hypoxia-inducible factor; however, it did change the binding of pVHL to another known binding partner, fibronectin. Cells expressing phospho-defective mutants caused improper fibronectin matrix deposition and demonstrated retarded tumor formation in mice. We propose that phosphorylation of the acidic domain plays a role in the regulation of proper fibronectin matrix deposition and that this may be relevant for the development of VHL-associated malignancies.  相似文献   

4.
The von Hippel-Lindau (VHL) tumor suppressor gene regulates extracellular matrix deposition. In VHL negative renal cancer cells, VHL(-), the lack of fibronectin matrix assembly is thought to promote and maintain tumor angiogenesis allowing vessels to infiltrate tumors. Therefore, and considering the importance of this process in tumor growth, we aimed to study why VHL(-) renal cancer cells fail to form a proper extracellular matrix. Our results showed that VHL(-) cells were not defective in fibronectin production and that the fibronectin produced by these cells was equally functional in promoting cell adhesion and matrix assembly as that produced by VHL(+) cells. We have previously reported that VHL(-) cells fail to form beta1 integrin fibrillar adhesions and have a diminished organization of actin stress fibers; therefore, we aimed to study if the small GTPase family is involved in this process. We found that activation of the RhoA GTPase was defective in VHL(-) cells, and this was possibly mediated by an increased activation of its inhibitor, p190RhoGAP. Additionally, the expression of constitutively active RhoA in VHL(-) cells resulted in formation of a fibronectin matrix. These results strongly suggest an important role for RhoA in some of the defects observed in renal cancer cells.  相似文献   

5.
The von Hippel-Lindau tumor suppressor pVHL plays a critical role in the pathogenesis of familial and sporadic clear cell carcinomas of the kidney and hemangioblastomas of the retina and central nervous system. pVHL targets the oxygen sensitive alpha subunit of hypoxia-inducible factor (HIF) for proteasomal degradation, thus providing a direct link between tumorigenesis and molecular pathways critical for cellular adaptation to hypoxia. Cell type specific gene targeting of VHL in mice has demonstrated that proper pVHL mediated HIF proteolysis is fundamentally important for survival, proliferation and differentiation of many cell types and furthermore, that inactivation of pVHL may, unexpectedly, inhibit tumor growth under certain conditions. Mouse knock out studies have provided novel mechanistic insights into VHL associated tumorigenesis and established a central role for HIF in the development of the VHL phenotype.  相似文献   

6.
The von Hippel-Lindau tumor suppressor gene   总被引:15,自引:0,他引:15  
  相似文献   

7.
We examined the biogenesis of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL) in vitro and in vivo. pVHL formed a complex with the cytosolic chaperonin containing TCP-1 (CCT or TRiC) en route to assembly with elongin B/C and the subsequent formation of the VCB-Cul2 ubiquitin ligase. Blocking the interaction of pVHL with elongin B/C resulted in accumulation of pVHL within the CCT complex. pVHL present in purified VHL-CCT complexes, when added to rabbit reticulocyte lysate, proceeded to form VCB and VCB-Cul2. Thus, CCT likely functions, at least in part, by retaining VHL chains pending the availability of elongin B/C for final folding and/or assembly. Tumor-associated mutations within exon II of the VHL syndrome had diverse effects upon the stability and/or function of pVHL-containing complexes. First, a pVHL mutant lacking the entire region encoded by exon II did not bind to CCT and yet could still assemble into complexes with elongin B/C and elongin B/C-Cul2. Second, a number of tumor-derived missense mutations in exon II did not decrease CCT binding, and most had no detectable effect upon VCB-Cul2 assembly. Many exon II mutants, however, were found to be defective in the binding to and subsequent ubiquitination of hypoxia-inducible factor 1alpha (HIF-1alpha), a substrate of the VCB-Cul2 ubiquitin ligase. We conclude that the selection pressure to mutate VHL exon II during tumorigenesis does not relate to loss of CCT binding but may reflect quantitative or qualitative defects in HIF binding and/or in pVHL-dependent ubiquitin ligase activity.  相似文献   

8.
9.
Latent transforming growth factor-beta-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in the storage of latent TGF beta in the ECM and regulate its availability. Here we show that fibronectin is critical for the incorporation of LTBP1 and transforming growth factor-beta (TGF beta) into the ECM of osteoblasts and fibroblasts. Immunolocalization studies suggested that fibronectin provides an initial scaffold that precedes and patterns LTBP1 deposition but that LTBP1 and fibronectin are later localized in separate fibrillar networks, suggesting that the initial template is lost. Treatment of fetal rat calvarial osteoblasts with a 70-kDa N-terminal fibronectin fragment that inhibits fibronectin assembly impaired incorporation of LTBP1 and TGFbeta into the ECM. Consistent with this, LTBP1 failed to assemble in embryonic fibroblasts that lack the gene for fibronectin. LTBP1 assembly was rescued by full-length fibronectin and superfibronectin, which are capable of assembly into fibronectin fibrils, but not by other fibronectin fragments, including a 160-kDa RGD-containing fragment that activates alpha5beta1 integrins. This suggests that the critical event for LTBP1 assembly is the formation of a fibronectin fibrillar network and that integrin ligation by fibronectin molecules alone is not sufficient. Not only was fibronectin essential for the initial incorporation of LTBP1 into the ECM, but the continued presence of fibronectin was required for the continued assembly of LTBP1. These studies highlight a nonredundant role for fibronectin in LTBP1 assembly into the ECM and suggest a novel role for fibronectin in regulation of TGF beta via LTBP1 interactions.  相似文献   

10.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the hereditary VHL disease and sporadic clear cell renal cell carcinomas (CCRCC). VHL-associated tumors are highly vascularized, a characteristic associated with overproduction of vascular endothelial growth factor (VEGF). The VHL protein (pVHL) is a component of the ubiquitin ligase E3 complex, targeting substrate proteins for ubiquitylation and subsequent proteasomic degradation. Here, we report that the pVHL can directly bind to the human RNA polymerase II seventh subunit (hsRPB7) through its beta-domain, and naturally occurring beta-domain mutations can decrease the binding of pVHL to hsRPB7. Introducing wild-type pVHL into human kidney tumor cell lines carrying endogenous mutant non-functional pVHL facilitates ubiquitylation and proteasomal degradation of hsRPB7, and decreases its nuclear accumulation. pVHL can also suppress hsRPB7-induced VEGF promoter transactivation, mRNA expression and VEGF protein secretion. Together, our results suggest that hsRPB7 is a downstream target of the VHL ubiquitylating complex and pVHL may regulate angiogenesis by targeting hsRPB7 for degradation via the ubiquitylation pathway and preventing VEGF expression.  相似文献   

11.
12.
13.
The vertebrate embryonic vasculature develops from angioblasts, which are specified from mesodermal precursors and develop in close association with blood cells. The signals that regulate embryonic vasculogenesis and angiogenesis are incompletely understood. Here, we show that R-spondin 3 (Rspo3), a member of a novel family of secreted proteins in vertebrates that activate Wnt/beta-catenin signaling, plays a key role in these processes. In Xenopus embryos, morpholino antisense knockdown of Rspo3 induces vascular defects because Rspo3 is essential for regulating the balance between angioblast and blood cell specification. In mice, targeted disruption of Rspo3 leads to embryonic lethality caused by vascular defects. Specifically in the placenta, remodeling of the vascular plexus is impaired. In human endothelial cells, R-spondin signaling promotes proliferation and sprouting angiogenesis in vitro, indicating that Rspo3 can regulate endothelial cells directly. We show that vascular endothelial growth factor is an immediate early response gene and a mediator of R-spondin signaling. The results identify Rspo3 as a novel, evolutionarily conserved angiogenic factor in embryogenesis.  相似文献   

14.
The deposition of fibronectin into the extracellular matrix is an integrin-dependent, multistep process that is tightly regulated in order to ensure controlled matrix deposition. Reduced fibronectin deposition has been associated with altered embryonic development, tumor cell invasion, and abnormal wound repair. In one of the initial steps of fibronectin matrix assembly, the amino-terminal region of fibronectin binds to cell surface receptors, termed matrix assembly sites. The present study was undertaken to investigate the role of extracellular signals in the regulation of fibronectin deposition. Our data indicate that the interaction of cells with the extracellular glycoprotein, vitronectin, specifically inhibits matrix assembly site expression and fibronectin deposition. The region of vitronectin responsible for the inhibition of fibronectin deposition was localized to the heparin-binding domain. Vitronectin's heparin-binding domain inhibited both beta(1) and non-beta(1) integrin-dependent matrix assembly site expression and could be overcome by treatment of cells with lysophosphatidic acid, an agent that promotes actin polymerization. The interaction of cells with the heparin-binding domain of vitronectin resulted in changes in actin microfilament organization and the subcellular distribution of the actin-associated proteins alpha-actinin and talin. These data suggest a mechanism whereby the heparin-binding domain of vitronectin regulates the deposition of fibronectin into the extracellular matrix through alterations in the organization of the actin cytoskeleton.  相似文献   

15.
Multitasking by pVHL in tumour suppression   总被引:1,自引:0,他引:1  
Functional inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene product, pVHL, leads to cancer in humans. It is widely accepted that pVHL functions to destabilise hypoxia inducible factor alpha (HIFalpha) subunits, key effectors of the hypoxia signalling pathway. However, growing evidence indicates that tumour suppression by pVHL also involves the control of a wide variety of HIFalpha-independent processes including microtubule dynamics, primary cilium maintenance, cell proliferation, neuronal apoptosis, extracellular matrix deposition and responses to DNA damage. Moreover, it is becoming apparent that tumour initiation requires not only VHL mutation but also the alteration of additional cooperating cancer pathways. These studies are beginning to provide insights into the signalling networks involving pVHL that normally control diverse cellular processes and how disruption of these networks leads to tumour formation.  相似文献   

16.
17.
18.
Akt1 belongs to the three-gene Akt family and functions as a serine-threonine kinase regulating phosphorylation of an array of substrates and mediating cellular processes such as cell migration, proliferation, survival, and cell cycle. Our previous studies have established the importance of Akt1 in angiogenesis and absence of Akt1 resulted in impaired integrin activation, adhesion, migration, and extracellular matrix assembly by endothelial cells and fibroblasts. In this study, we identify the downstream signaling pathways activated by Akt1 in the regulation of these cellular events. We demonstrate here that Akt1 is necessary for the growth factor stimulated activation of 14-3-3beta-Rac1-p21 activated kinase (Pak) pathway in endothelial cells and fibroblasts. While activation of Akt1 resulted in translocation of Rac1 to membrane ruffles, enhanced Rac1 activity, Pak1 phosphorylation, and lamellipodia formation, resulting in enhanced adhesion and assembly of fibronectin, inhibition of Akt1 resulted in inhibition of these processes due to impaired Rac1-Pak signaling. Formation of lamellipodia, adhesion, and fibronectin assembly by myristoylated Akt1 expression in NIH 3T3 fibroblasts was inhibited by co-expression with either dominant negative Rac1 or dominant negative Pak1. In contrast, impaired lamellipodia formation, adhesion, and fibronectin assembly by dominant negative-Akt1 expression was rescued by co-expression with either constitutively active-Rac1 or -Pak1. Moreover, previously reported defects in adhesion and extracellular matrix assembly by Akt1(-/-) fibroblasts could be rescued by expression with either active-Rac1 or -Pak1, implying the importance of Rac1-Pak signaling in growth factor stimulated cytoskeletal assembly, lamellipodia formation and cell migration in endothelial cells and fibroblasts downstream of Akt1 activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号