首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Targeted modification of mammalian genomes   总被引:5,自引:0,他引:5  
The stable and site-specific modification of mammalian genomes has a variety of applications in biomedicine and biotechnology. Here we outline two alternative approaches that can be employed to achieve this goal: homologous recombination (HR) or site-specific recombination. Homologous recombination relies on sequence similarity (or rather identity) of a piece of DNA that is introduced into a host cell and the host genome. In most cell types, the frequency of homologous recombination is markedly lower than the frequency of random integration. Especially in somatic cells, homologous recombination is an extremely rare event. However, recent strategies involving the introduction of DNA double-strand breaks, triplex forming oligonucleotides or adeno-associated virus can increase the frequency of homologous recombination.

Site-specific recombination makes use of enzymes (recombinases, transposases, integrases), which catalyse DNA strand exchange between DNA molecules that have only limited sequence homology. The recognition sites of site-specific recombinases (e.g. Cre, Flp or ΦC31 integrase) are usually 30–50 bp. In contrast, retroviral integrases only require a specific dinucleotide sequence to insert the viral cDNA into the host genome. Depending on the individual enzyme, there are either innumerable or very few potential target sites for a particular integrase/recombinase in a mammalian genome. A number of strategies have been utilised successfully to alter the site-specificity of recombinases. Therefore, site-specific recombinases provide an attractive tool for the targeted modification of mammalian genomes.  相似文献   


2.
Site-specific recombinases are the enzymes that catalyze site-specific recombination between two specific DNA sequences to mediate DNA integration, excision, resolution, or inversion and that play a pivotal role in the life cycles of many microorganisms including bacteria and bacteriophages. These enzymes are classified as tyrosine-type or serine-type recombinases based on whether a tyrosine or serine residue mediates catalysis. All known tyrosine-type recombinases catalyze the formation of a Holliday junction intermediate, whereas the catalytic mechanism of all known serine-type recombinases includes the 180° rotation and rejoining of cleaved substrate DNAs. Both recombinase families are further subdivided into two families; the tyrosine-type recombinases are subdivided by the recombination directionality, and the serine-type recombinases are subdivided by the protein size. Over more than two decades, many different site-specific recombinases have been applied to in vivo genome engineering, and some of them have been used successfully to mediate integration, deletion, or inversion in a wide variety of heterologous genomes, including those from bacteria to higher eukaryotes. Here, we review the recombination mechanisms of the best characterized recombinases in each site-specific recombinase family and recent advances in the application of these recombinases to genomic manipulation, especially manipulations involving site-specific gene integration into heterologous genomes.  相似文献   

3.
The feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the genera Streptomyces, Micromonospora, and Saccharothrix. Two different systems based on Cre/loxP and Dre/rox have been utilized for numerous applications. The activity of the Cre recombinase on the heterospecific loxLE and loxRE sites was similar to its activity on wild-type loxP sites. Moreover, an apramycin resistance marker flanked by the loxLERE sites was eliminated from the Streptomyces coelicolor M145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters from Streptomyces sp. strain Tü6071, Streptomyces cinnamonensis A519, and Streptomyces aureofaciens Tü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.  相似文献   

4.
Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene), mediated by zinc finger recombinases (ZFRs), chimaeric enzymes with linked zinc finger (DNA recognition) and recombinase (catalytic) domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.  相似文献   

5.
Nonviral integration systems are widely used genetic tools in transgenesis and play increasingly important roles in strategies for therapeutic gene transfer. Methods to efficiently regulate the activity of transposases and site-specific recombinases have important implications for their spatiotemporal regulation in live transgenic animals as well as for studies of their applicability as safe vectors for genetic therapy. In this report, strategies for posttranslational induction of a variety of gene-inserting proteins are investigated. An engineered hormone-binding domain, derived from the human progesterone receptor, hPR891, and specifically recognized by the synthetic steroid mifepristone, is fused to the Sleeping Beauty, Frog Prince, piggyBac and Tol2 transposases as well as to the Flp and PhiC31 recombinases. By analyzing mifepristone-directed inducibility of gene insertion in cultured human cells, efficient posttranslational regulation of the Flp recombinase and the PhiC31 integrase is documented. In addition, fusion of the PhiC31 integrase with the ER(T2) modified estrogen receptor hormone-binding domain results in a protein, which is inducible by a factor of 22-fold and retains 75% of the activity of the wild-type protein. These inducible PhiC31 integrase systems are important new tools in transgenesis and in safety studies of the PhiC31 integrase for gene therapy applications.  相似文献   

6.
Homologous and site-specific DNA recombination has revolutionized genetic engineering. The reliability of recombinases such as Cre and FLP has allowed scientists to design complex strategies to study gene function in mammals. However, the retention of recombination sites in the genome limits the use of Cre and FLP recombinases in subsequent modifications. Access to additional recombinases in the ES cell toolbox would enormously widen the number of possibilities to manipulate the genome. In the method presented here, we combine the use of PhiC31, a site-specific integrase, with FLP to obtain site-specific insertion and replacement in pre-inserted docking sites in the genome of mouse ES cells. This method allows for the integration of any sequence of interest in a pre-defined locus, leaving Cre recombinase available for downstream applications. The selection strategy is based on a silent selection marker activated by a plasmid-delivered promoter, making the integration system highly reliable and reducing the need for extensive molecular screens. This article describes how to create "dockable" mouse embryonic stem (ES) cell lines, integrate incoming vectors, and analyze the resulting clones. Current applications of this technology are also discussed.  相似文献   

7.
Mammalian genomes contain active recombinase recognition sites   总被引:21,自引:0,他引:21  
Recombinases derived from microorganisms mediate efficient site-specific recombination. For example, the Cre recombinase from bacteriophage P1 efficiently carries out recombination at its loxP target sites. While this enzyme can function in mammalian cells, the 34bp loxP site is expected to be absent from mammalian genomes. We have discovered that sequences from the human and mouse genomes surprisingly divergent from loxP can support Cre-mediated recombination at up to 100% of the efficiency of the native loxP site in bacterial assays. Transient assays in human cells demonstrate that such pseudo-lox sites also support Cre-mediated integration and excision in the human cell environment. Pseudo sites for Cre and other recombinases may be useful for site-specific insertion of exogenous genes into mammalian genomes during gene therapy and other genetic engineering processes.  相似文献   

8.
The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC) vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector) and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3-96.8%. Additionally, we observed homogenous gene expression in 77.3-87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression.  相似文献   

9.
S Brecht  H Erdhart  M Soete  D Soldati 《Gene》1999,234(2):239-247
Site-specific DNA recombinases from bacteriophage and yeasts have been developed as novel tools for genome engineering both in prokaryotes and eukaryotes. The 38kDa Cre protein efficiently produces both inter- and intramolecular recombination between specific 34bp sites called loxP. We report here the in vivo use of Cre recombinase to manipulate the genome of the protozoan parasite Toxoplasma gondii. Cre catalyzes the precise removal of transgenes from T. gondii genome when flanked by two directly repeated loxP sites. The efficiency of excision has been determined using LacZ as reporter and indicates that it can easily be applied to the removal of undesired sequences such as selectable marker genes and to the determination of gene essentiality. We have also shown that the reversibility of the recombination reaction catalyzed by Cre offers the possibility to target site-specific integration of a loxP-containing vector in a chromosomally placed loxP target in the parasite. In mammalian systems, the Cre recombinase can be regulated by hormone and is used for inducible gene targeting. In T. gondii, fusions between Cre recombinase and the hormone-binding domain of steroids are constitutively active, hampering the utilization of this mode of post-translational regulation as inducible gene expression system.  相似文献   

10.
Major advances in the use of site-specific recombinases to facilitate sustained gene expression via chromosomal targeting have been made during the past year. New tools for genomic manipulations using this technology include the discovery of epitopes in recombinases that confer nuclear localization, crystal structures that show the precise topology of recombinase-DNA-substrate synaptic complexes, manipulations of the DNA recognition sequences that select for integration over excision of DNA, and manipulations that make changes in gene expression inducible by drug administration. In addition, endogenous eukaryotic and mammalian DNA sequences have been discovered that can support site-specific recombinase-mediated manipulations.  相似文献   

11.
Nonviral integration systems are widely used genetic tools in transgenesis and play increasingly important roles in strategies for therapeutic gene transfer. Methods to efficiently regulate the activity of transposases and site-specific recombinases have important implications for their spatiotemporal regulation in live transgenic animals as well as for studies of their applicability as safe vectors for genetic therapy. In this report, strategies for posttranslational induction of a variety of gene-inserting proteins are investigated. An engineered hormone-binding domain, derived from the human progesterone receptor, hPR891, and specifically recognized by the synthetic steroid mifepristone, is fused to the Sleeping Beauty, Frog Prince, piggyBac and Tol2 transposases as well as to the Flp and ΦC31 recombinases. By analyzing mifepristone-directed inducibility of gene insertion in cultured human cells, efficient posttranslational regulation of the Flp recombinase and the ΦC31 integrase is documented. In addition, fusion of the ΦC31 integrase with the ERT2 modified estrogen receptor hormone-binding domain results in a protein, which is inducible by a factor of 22-fold and retains 75% of the activity of the wild-type protein. These inducible ΦC31 integrase systems are important new tools in transgenesis and in safety studies of the ΦC31 integrase for gene therapy applications.  相似文献   

12.
Summary: A classical feature of the tyrosine recombinase family of proteins catalyzing site-specific recombination, as exemplified by the phage lambda integrase and the Cre and Flp recombinases, is the ability to recombine substrates sharing very limited DNA sequence identity. Decades of research have established the importance of this short stretch of identity within the core regions of the substrates. Since then, several new enzymes that challenge this paradigm have been discovered and require the role of sequence identity in site-specific recombination to be reconsidered. The integrases of the conjugative transposons such as Tn916, Tn1545, and CTnDOT recombine substrates with heterologous core sequences. The integrase of the mobilizable transposon NBU1 performs recombination more efficiently with certain core mismatches. The integration of CTX phage and capture of gene cassettes by integrons also occur by altered mechanisms. In these systems, recombination occurs between mismatched sequences by a single strand exchange. In this review, we discuss literature that led to the formulation of the current strand-swapping isomerization model for tyrosine recombinases. The review then focuses on recent developments on the recombinases that challenged the paradigm that was derived from the studies of early systems.  相似文献   

13.
DNA site-specific recombinases (SSRs) such as Cre, FLPe, and phiC31, are powerful tools for analyzing gene function in vertebrates. While the availability of multiple high-efficiency SSRs would facilitate a wide array of genomic engineering possibilities, efficient recombination in mammalian cells has only been observed with Cre recombinase. Here we report the de novo synthesis of mouse codon-optimized FLP (FLPo) and PhiC31 (PhiC31o) SSRs, which result in recombination efficiencies similar to Cre.  相似文献   

14.
15.
The development of new methods for gene addition to mammalian genomes is necessary to overcome the limitations of conventional genetic engineering strategies. Although a variety of DNA-modifying enzymes have been used to directly catalyze the integration of plasmid DNA into mammalian genomes, there is still an unmet need for enzymes that target a single specific chromosomal site. We recently engineered zinc-finger recombinase (ZFR) fusion proteins that integrate plasmid DNA into a synthetic target site in the human genome with exceptional specificity. In this study, we present a two-step method for utilizing these enzymes in any cell type at randomly-distributed target site locations. The piggyBac transposase was used to insert recombinase target sites throughout the genomes of human and mouse cell lines. The ZFR efficiently and specifically integrated a transfected plasmid into these genomic target sites and into multiple transposons within a single cell. Plasmid integration was dependent on recombinase activity and the presence of recombinase target sites. This work demonstrates the potential for broad applicability of the ZFR technology in genome engineering, synthetic biology and gene therapy.  相似文献   

16.
The availability of site-specific recombinases has revolutionized the rational construction of cell lines with predictable properties. Early efforts were directed to providing pre-characterized genomic loci with a single recombinase target site that served as an address for the integration of vectors carrying a compatible tag. Efficient procedures of this type had to await recombinases like ΦC31, which recombine attP and attB target sites in a one-way reaction – at least in the cellular environment of the higher eukaryotic cell. Still these procedures lead to the co-introduction of prokaryotic vector sequences that are known to cause epigenetic silencing. This review illuminates the actual status of the more advanced recombinase-mediated cassette exchange (RMCE) techniques that have been developed for the major members of site-specific recombinases (SR), Flp, Cre and ΦC31. In RMCE the genomic address consists of a set of heterospecific recombinase target (RT-) sites permitting the exchange of the intervening sequence for the gene of interest (GOI), as part of a similar cassette. This process locks the GOI in place and it is ‘clean’ in the sense that it does not co-introduce prokaryotic vector parts nor does it leave behind a selection marker.  相似文献   

17.
The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.  相似文献   

18.
Diversity in the serine recombinases   总被引:18,自引:0,他引:18  
Most site-specific recombinases fall into one of two families, based on evolutionary and mechanistic relatedness. These are the tyrosine recombinases or lambda integrase family and the serine recombinases or resolvase/invertase family. The tyrosine recombinases are structurally diverse and functionally versatile and include integrases, resolvases, invertases and transposases. Recent studies have revealed that the serine recombinase family is equally versatile and members have a variety of structural forms. The archetypal resolvase/invertases are highly regulated, only affect resolution or inversion and they have an N-terminal catalytic domain and a C-terminal DNA binding domain. Phage-encoded serine recombinases (e.g. phiC31 integrase) cause integration and excision with strictly controlled directionality, and have an N-terminal catalytic domain but much longer C-terminal domains compared with the resolvase/invertases. This high molecular weight group also contains transposases (e.g. TnpX from Tn4451). Other transposases, which belong to a third structurally different group, are similar in size to the resolvase/invertases but have the DNA binding domain N-terminal to the catalytic domain (e.g. IS607 transposase). These three structural groups represented by the resolvase/invertases, the large serine recombinases and relatives of IS607 transposase correlate with three major groupings seen in a phylogeny of the catalytic domains. These observations indicate that the serine recombinases are modular and that fusion of the catalytic domain to unrelated sequences has generated structural and functional diversity.  相似文献   

19.
The Tec1 and Tec2 transposons of the ciliate Euplotes crassus carry a gene for a tyrosine-type site-specific recombinase. The expression of the Tec2 gene apparently uses a programmed +1 frameshift. To test this hypothesis, we first examined whether this gene has evolved under purifying selection in Tec1 and Tec2. Each element carries three genes, and each has evolved under purifying selection for the function of its encoded protein, as evidenced by a dearth of nonsynonymous changes. This distortion of divergence is apparent in codons both 5' and 3' of the frameshift site. Thus, Tec2 transposons have diverged from each other while using a programmed +1 frameshift to produce recombinase, the function of which is under purifying selection. What might this function be? Tyrosine-type site-specific recombinases are extremely rare in eukaryotes, and Tec elements are the first known eukaryotic type II transposons to encode a site-specific recombinase. Tec elements also encode a widespread transposase. The Tec recombinase might function in transposition, resolve products of transposition (bacterial replicative transposons use recombinase or resolvase to separate joined replicons), or provide a function that benefits the ciliate host. Transposons in ciliated protozoa are removed from the macronucleus, and it has been proposed that the transposons provide this "excisase" activity.  相似文献   

20.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号