首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The Gran Chaco dry forest ecoregion corresponds to the southern portion of the South America diagonal belt of open formations, being one of the most threatened subtropical woodland savannas in the world. The area is still poorly known biologically and has been suffering with impressively high forest cover loss in the last 10 years. Integrating morphological and molecular data, we detected and describe a cryptic new species of lizard genus Ameivula endemic from the eastern part of this ecoregion, the called Humid Chaco. Ameivula apipensis sp nov. is characterised by a whitish brown vertebral stripe in adults and juveniles, a lateral field without ocelli and with overlapping spot, presence of an interfrontoparietal scale in 46.2% of the specimens, 12–17 femoral pores, an hemipenis without lateral sac, five xiphisternal ribs, and by a combination of meristic features as confirmed by discriminant analysis. The new species was recovered sister to a clade from Western Cerrado in our analysis, the first phylogenetic hypothesis for the Ameivula and Glaucomastix genera based on 1977 base pairs of three mitochondrial (12S, 16S and cyt‐b) and one nuclear (c‐mos) genes, including all the recognised species at the moment. Maximum parsimony and Bayesian inference recovered the monophyly of Ameivula and Glaucomastix with strong support. Reinforcing previous studies, our results suggest the presence of additional cryptic species in Ameivula from the Western Cerrado.  相似文献   

2.
    
Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.  相似文献   

3.
    
For many tropical plants, birds are the most important seed dispersers. Not all birds, however, will provide equally effective dispersal services. Behavioral differences, during and after feeding, can result in different establishment probabilities of new individuals. During 3 yr, we examined species‐specific quantitative and qualitative aspects of Guettarda viburnoides seed dispersal by avian frugivores, focusing on how these aspects modify seed dispersal effectiveness. Fruits of G. viburnoides were consumed by ten species of birds, two of which, Cyanocorax cyanomelas and Pteroglossus castanotis, removed 80 percent of the fruits. These two species differ in qualitative aspects of seed dispersal. First, they select for fruits of different sizes; C. cyanomelas feeds on larger fruits than P. castanotis, which results in the former dispersing larger endocarps than the latter. Second, they differ in their fruit handling treatment; C. cyanomelas are pulp consumers, whereas P. castanotis swallow the fruit whole, and are thus traditionally considered ‘legitimate’ dispersers. The probability of seedling emergence, the temporal pattern of emergence, the number of emerged seedlings per endocarp, and the probability of post‐dispersal seed predation differs between endocarps dispersed by C. cyanomelas and P. castanotis; endocarps dispersed by the former have higher emergence probabilities, higher number of seedlings, faster emergence times, and lower predation probabilities than those dispersed by the latter. Finally, these birds differ in their landscape patterns of endocarp deposition; C. cyanomelas disperses endocarps to habitats with higher recruitment probabilities. Ultimately, the pulp consumer C. cyanomelas is a more effective disperser of G. viburnoides than P. castanotis.  相似文献   

4.
    
Efficient targeting of actions to reduce the spread of invasive alien species relies on understanding the spatial, temporal, and individual variation of movement, in particular related to dispersal. Such patterns may differ between individuals at the invasion front compared to individuals in established and dense populations due to differences in environmental and ecological conditions such as abundance of conspecifics or sex‐specific dispersal affecting the encounter rate of potential mates. We assessed seasonal and diurnal variation in movement pattern (step length and turning angle) of adult male and female raccoon dog at their invasion front in northern Sweden using data from Global Positioning System (GPS)‐marked adult individuals and assessed whether male and female raccoon dog differed in their movement behavior. There were few consistent sex differences in movement. The rate of dispersal was rather similar over the months, suggesting that both male and female raccoon dog disperse during most of the year, but with higher speed during spring and summer. There were diurnal movement patterns in both sexes with more directional and faster movement during the dark hours. However, the short summer nights may limit such movement patterns, and long‐distance displacement was best explained by fine‐scale movement patterns from 18:00 to 05:00, rather than by movement patterns only from twilight and night. Simulation of dispersing raccoon dogs suggested a higher frequency of male–female encounters that were further away from the source population for the empirical data compared to a scenario with sex differences in movement pattern. The lack of sex differences in movement pattern at the invasion front results in an increased likelihood for reproductive events far from the source population. Animals outside the source population should be considered potential reproducing individuals, and a high effort to capture such individuals is needed throughout the year to prevent further spread.  相似文献   

5.
    
Mistletoes represent the best example of specialization in seed dispersal, with a reduced assemblage of dispersal agents. Specific dispersal requirements mediated by the specificity of seed deposition site have apparently led to the evolution of such close relationships between mistletoes and certain frugivores. Here, we provide evidences for another case of specialization involving epiphytic cacti in the genus Rhipsalis, and small Neotropical passerines Euphonia spp., which also act as the main seed dispersers of mistletoes in the family Viscaceae. With field observations, literature search, and observations on captive birds, we demonstrated that Rhipsalis have specific establishment requirements, and euphonias are the most effective dispersers of Rhipsalis seeds in both quantitative and qualitative aspects, potentially depositing seeds onto branches of host plants. We interpret the similar dispersal systems of Rhipsalis and Viscaceae mistletoes, which involve the same dispersal agents, similar fruit morphologies, and fruit chemistry as convergent adaptive strategies that enable seeds of both groups to reach adequate microsites for establishment in host branches.  相似文献   

6.
    
We report the first comparative population genetics study for vent fauna in the Southern Ocean using cytochrome C oxidase I and microsatellite markers. Three species are examined: the kiwaid squat lobster, Kiwa tyleri, the peltospirid gastropod, Gigantopelta chessoia, and a lepetodrilid limpet, Lepetodrilus sp., collected from vent fields 440 km apart on the East Scotia Ridge (ESR) and from the Kemp Caldera on the South Sandwich Island Arc, ~95 km eastwards. We report no differentiation for all species across the ESR, consistent with panmixia or recent range expansions. A lack of differentiation is notable for Kiwa tyleri, which exhibits extremely abbreviated lecithotrophic larval development, suggestive of a very limited dispersal range. Larval lifespans may, however, be extended by low temperature‐induced metabolic rate reduction in the Southern Ocean, muting the impact of dispersal strategy on patterns of population structure. COI diversity patterns suggest all species experienced demographic bottlenecks or selective sweeps in the past million years and possibly at different times. ESR and Kemp limpets are divergent, although with evidence of very recent ESR‐Kemp immigration. Their divergence, possibility indicative of incipient speciation, along with the absence of the other two species at Kemp, may be the consequence of differing dispersal capabilities across a ~1000 m depth range and/or different selective regimes between the two areas. Estimates of historic and recent limpet gene flow between the ESR and Kemp are consistent with predominantly easterly currents and potentially therefore, cross‐axis currents on the ESR, with biogeographic implications for the region.  相似文献   

7.
    
Every organism on Earth must cope with a multitude of species interactions both directly and indirectly throughout its life cycle. However, how selection from multiple species occupying different trophic levels affects diffuse mutualisms has received little attention. As a result, how a given species amalgamates the combined effects of selection from multiple mutualists and antagonists to enhance its own fitness remains little understood. We investigated how multispecies interactions (frugivorous birds, ants, fruit flies and parasitoid wasps) generate selection on fruit traits in a seed dispersal mutualism. We used structural equation models to assess whether seed dispersers (frugivorous birds and ants) exerted phenotypic selection on fruit and seed traits in the spiny hackberry (Celtis ehrenbergiana), a fleshy‐fruited tree, and how these selection regimes were influenced by fruit fly infestation and wasp parasitoidism levels. Birds exerted negative correlational selection on the combination of fruit crop size and mean seed weight, favouring either large crops with small seeds or small crops with large seeds. Parasitoids selected plants with higher fruit fly infestation levels, and fruit flies exerted positive directional selection on fruit size, which was positively correlated with seed weight. Therefore, higher parasitoidism indirectly correlated with higher plant fitness through increased bird fruit removal. In addition, ants exerted negative directional selection on mean seed weight. Our results show that strong selection on phenotypic traits may still arise in perceived diffuse species interactions. Overall, we emphasize the need to consider diverse direct and indirect partners to achieve a better understanding of the mechanisms driving phenotypic trait evolution in multispecies interactions.  相似文献   

8.
    
Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence‐based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual‐based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self‐recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self‐recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds.  相似文献   

9.
    
Understanding levels of connectivity among scleractinian coral populations over a range of temporal and spatial scales is vital for managing tropical coral reef ecosystems. Here, we use multilocus microsatellite genotypes to assess the spatial genetic structure of two molecular operational taxonomic units (MOTUs, types α and β) of the widespread coral Pocillopora damicornis on the Great Barrier Reef (GBR) and infer the extent of connectivity on spatial scales spanning from local habitat types to latitudinal sectors of the GBR. We found high genetic similarities over large spatial scales spanning > 1000 km from the northern to the southern GBR, but also strong genetic differentiation at local scales in both MOTUs. The presence of a considerable number of first‐generation migrants within the populations sampled (12% and 27% for types α and β, respectively) suggests that genetic differentiation over small spatial scales is probably a consequence of stochastic recruitment from different genetic pools into recently opened up spaces on the reef, for example, following major disturbance events. We explain high genetic similarity among populations over hundreds of kilometres by long competency periods of brooded zooxanthellate larvae and multiple larval release events each year, combined with strong longshore currents typical along the GBR. The lack of genetic evidence for predominantly clonal reproduction in adult populations of P. damicornis, which broods predominantly asexually produced larvae, further undermines the paradigm that brooded larvae settle close to parent colonies shortly after the release.  相似文献   

10.
    
Large seeds contain more stored resources, and seedlings germinating from large seeds generally cope better with environmental stresses such as shading, competition and thick litter layers, than seedlings germinating from small seeds. A pattern with small‐seeded species being associated with open habitats and large‐seeded species being associated with closed (shaded) habitats has been suggested and supported by comparative studies. However, few studies have assessed the intra‐specific relationship between seed size and recruitment, comparing plant communities differing in canopy cover. Here, seeds from four plant species commonly occurring in ecotones between open and closed habitats (Convallaria majalis, Frangula alnus, Prunus padus and Prunus spinosa) were weighed and sown individually (3200 seeds per species) in open and closed‐canopy sites, and seedling emergence and survival recorded over 3 years. Our results show a generally positive, albeit weak, relationship between seed size and recruitment. In only one of the species, C. majalis, was there an association between closed canopy habitat and a positive seed size effect on recruitment. We conclude that there is a weak selection gradient favouring larger seeds, but that this selection gradient is not clearly related to habitat.  相似文献   

11.
    
As the global population urbanizes, dramatic changes are expected in city lighting and the urban form, which may threaten the functioning of urban ecosystems and the services they deliver. However, little is known about the ecological impact of lighting in different urban contexts. Movement is an important ecological process that can be disrupted by artificial lighting. We explored the impact of lighting on gap crossing for Pipistrellus pipistrellus, a species of bat (Chiroptera) common within UK cities. We aimed to determine whether the probability of crossing gaps in tree cover varied with crossing distance and lighting level, through stratified field surveys. We then used the resulting data on barrier thresholds to model the landscape resistance due to lighting across an entire city and explored the potential impact of scenarios for future changes to street lighting. The level of illumination required to create a barrier effect reduced as crossing distance increased. For those gaps where crossing was recorded, bats selected the darker parts of gaps. Heavily built parts of the case study city were associated with large and brightly lit gaps, and spatial models indicate movement would be highly restricted in these areas. Under a scenario for brighter street lighting, the area of accessible land cover was further reduced in heavily built parts of the city. We believe that this is the first study to demonstrate how lighting may create resistance to species movement throughout an entire city. That connectivity in urban areas is being disrupted for a relatively common species raises questions about the impacts on less tolerant groups and the resilience of bat communities in urban centres. However, this mechanistic approach raises the possibility that some ecological function could be restored in these areas through the strategic dimming of lighting and narrowing of gaps.  相似文献   

12.
    
Urbanization affects key aspects of wildlife ecology. Dispersal in urban wildlife species may be impacted by geographical barriers but also by a species’ inherent behavioural variability. There are no functional connectivity analyses using continuous individual‐based sampling across an urban‐rural continuum that would allow a thorough assessment of the relative importance of physical and behavioural dispersal barriers. We used 16 microsatellite loci to genotype 374 red foxes (Vulpes vulpes) from the city of Berlin and surrounding rural regions in Brandenburg in order to study genetic structure and dispersal behaviour of a mobile carnivore across the urban‐rural landscape. We assessed functional connectivity by applying an individual‐based landscape genetic optimization procedure. Three commonly used genetic distance measures yielded different model selection results, with only the results of an eigenvector‐based multivariate analysis reasonably explaining genetic differentiation patterns. Genetic clustering methods and landscape resistance modelling supported the presence of an urban population with reduced dispersal across the city border. Artificial structures (railways, motorways) served as main dispersal corridors within the cityscape, yet urban foxes avoided densely built‐up areas. We show that despite their ubiquitous presence in urban areas, their mobility and behavioural plasticity, foxes were affected in their dispersal by anthropogenic presence. Distinguishing between man‐made structures and sites of human activity, rather than between natural and artificial structures, is thus essential for better understanding urban fox dispersal. This differentiation may also help to understand dispersal of other urban wildlife and to predict how behaviour can shape population genetic structure beyond physical barriers.  相似文献   

13.
  总被引:1,自引:0,他引:1  
  相似文献   

14.
    
Large‐seeded plants may suffer seed dispersal limitation in human‐modified landscapes if seed dispersers are absent or unable to disperse their seeds. We investigated dispersal limitation for the large‐seeded tree Virola surinamensis in a human‐modified landscape in southern Costa Rica. During two fruiting seasons, we monitored crop size, seed removal rates, the number of fruiting conspecifics within 100 m, and feeding visitation rates by frugivores at trees located in high and low forest disturbance conditions. Seed removal rates and the total number of seeds removed were high regardless of the disturbance level, but these parameters increased with tree crop size and decreased with the number of fruiting V. surinamensis trees within a 100 m radius. Trees at low disturbance levels were more likely to be visited by seed dispersers. Black mandibled toucans (Ramphastos ambiguus) and spider monkeys (Ateles geoffroyi) were the most important seed dispersers, based on visitation patterns and seed removal rates. Spider monkey feeding visits were more frequent at high disturbance levels, but the monkeys preferentially visited isolated trees with large yields and surrounded by a low number of fruiting Virola trees within 100 m. Toucan visitation patterns were not constrained by any of the predictors and they visited trees equally across the landscape. We suggest that isolated and highly fecund Virola trees are an important food resource for spider monkeys in human‐modified landscapes and that toucans can provide resilience against seed dispersal limitations for large‐seeded plants in human‐modified landscapes in the absence of hunting.  相似文献   

15.
16.
    
The northwestern Indian Ocean harbors a number of larger marine vertebrate taxa that warrant the investigation of genetic population structure given remarkable spatial heterogeneity in biological characteristics such as distribution, behavior, and morphology. Here, we investigate the genetic population structure of four commercially exploited shark species with different biological characteristics (Carcharhinus limbatus, Carcharhinus sorrah, Rhizoprionodon acutus, and Sphyrna lewini) between the Red Sea and all other water bodies surrounding the Arabian Peninsula. To assess intraspecific patterns of connectivity, we constructed statistical parsimony networks among haplotypes and estimated (1) population structure; and (2) time of most recent population expansion, based on mitochondrial control region DNA and a total of 20 microsatellites. Our analysis indicates that, even in smaller, less vagile shark species, there are no contemporary barriers to gene flow across the study region, while historical events, for example, Pleistocene glacial cycles, may have affected connectivity in C. sorrah and R. acutus. A parsimony network analysis provided evidence that Arabian S. lewini may represent a population segment that is distinct from other known stocks in the Indian Ocean, raising a new layer of conservation concern. Our results call for urgent regional cooperation to ensure the sustainable exploitation of sharks in the Arabian region.  相似文献   

17.
    
David M. Watson 《Biotropica》2013,45(2):195-202
Mistletoes rely on birds for seed dispersal, but the presumed importance of mistletoe‐specialist frugivores has not been critically examined nor compared with generalist frugivores and opportunistic foragers. The contribution of these three groups was compared directly by quantifying bird visitation to fruiting mistletoe plants ( Oryctanthus occidentalis: Loranthaceae) at Barro Colorado Island, Panama, and by comparing these results with proportions calculated from other empirical studies of mistletoe visitation conducted elsewhere. After more than 100 h of timed watches, 23 bird species were recorded visiting eight heavily infected host trees ( Luehea seemannii: Tiliaceae). Eight of these species visited mistletoe, of which five (all tyrannids) consumed mistletoe fruit. Although two mistletoe specialist frugivores ( Tyrannulus elatus and Zimmerius vilissimus) removed most fruit (73%), more than a quarter was consumed by one generalist frugivore ( Mionectes oleagineus) and two opportunists ( Myiozetetes cayanensis and Myiozetetes similis). Post consumption behaviour varied: the specialists flew from mistletoe to mistletoe, the generalist rested in the subcanopy and understory, and the opportunists spent most time hawking insects and resting high in the canopy. Integrating these data with previous work, the dietary specialization, short gut passage rate and strict habitat preferences of mistletoe specialists suggests that their services relate primarily to intensification and contagious dispersal, while species with broader diets are more likely to visit uninfected trees and establish new infections. The presumed importance of mistletoe‐specialist frugivores was not supported and mistletoes are considered to be comparable to many other bird‐dispersed plants, relying on both specialist and generalist frugivores, while opportunists may be disproportionately important in long‐distance dispersal.  相似文献   

18.
    
Generalist parasites exploit multiple host species at the population level, but the individual parasite's strategy may be either itself a generalist or a specialist pattern of host species use. Here, we studied the relationship between host availability and host use in the individual parasitism patterns of the Shiny Cowbird Molothrus bonariensis, a generalist avian obligate brood parasite that parasitizes an extreme range of hosts. Using five microsatellite markers and an 1120‐bp fragment of the mtDNA control region, we reconstructed full‐sibling groups from 359 cowbird eggs and chicks found in nests of the two most frequent hosts in our study area, the Chalk‐browed Mockingbird Mimus saturninus and the House Wren Troglodytes aedon. We were able to infer the laying behavior of 17 different females a posteriori and found that they were mostly faithful to a particular laying area and host species along the entire reproductive season and did not avoid using previously parasitized nests (multiple parasitism) even when other nests were available for parasitism. Moreover, we found females using the same host nest more than once (repeated parasitism), which had not been previously reported for this species. We also found few females parasitizing more than one host species. The use of an alternative host was not related to the main hosts' nest availability. Overall, female shiny cowbirds use a spatially structured and host species specific approach for parasitism, but they do so nonexclusively, resulting in both detectable levels of multiple parasitism and generalism at the level of individual parasites.  相似文献   

19.
    
The taxonomic history of the diatom genus Amphora is one of a broad early morphological concept resulting in the inclusion of a diversity of taxa, followed by an extended period of revision and refinement. The introduction of molecular systematics has increased the pace of revision and has largely resolved the relationships between the major lineages, indicating homoplasy in the evolution of amphoroid symmetry. Within the two largest monophyletic lineages, the genus Halamphora and the now taxonomically refined genus Amphora, the intrageneric morphological and ecological relationships have yet to be explored within a phylogenetic framework. Critical among this is whether the range of morphological features exhibited within these diverse genera are reflective of evolutionary groupings or, as with many previously studied amphoroid features, are nonhomologous when examined phylogenetically. Presented here is a four‐marker molecular phylogeny that includes 31 taxa from the genus Amphora and 77 taxa from the genus Halamphora collected from fresh, brackish, and salt waters from coastal and inland habitats of the United States and Japan. These phylogenies illustrate complex patterns in the evolution of frustule morphology and ecology within the genera and the implications of this on the taxonomy, classification, and organization of the genera are discussed.  相似文献   

20.
    
The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号