首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Veeken  Annegreet  Wassen  Martin J. 《Plant Ecology》2020,221(10):893-911

Restoration of rich fens is commonly attempted through local-scale measures, such as removal of sod or blockage of ditches. However, regional-scale restoration measures, that aim to re-establish the original hydrology in which rich fens developed, might have a more long-lasting effect. We investigated the effect of local- and regional-scale restoration measures on a vulnerable rich fen in the Naardermeer nature reserve in the Netherlands. We compared water quality and vegetation composition of the fen before and after the restoration measures, almost 30 years apart. Overall rich fen species increased and although this indicates the desired increased supply of fresh mineral-rich groundwater to the fen, continued succession towards poor fen vegetation has not been prevented in the entire fen. Despite sod layer removal, we observed an increase in a Polytrichum-dominated vegetation in patches that are primarily fed by rainwater. Our findings confirm results from a previous study which showed that brackish palaeo-groundwater is still contributing substantially to the water balance of the fen, especially in periods of precipitation deficit. We conclude that the local- and regional-scale restoration measures have been successful in increasing the abundance of rich fen species in parts of the fen. However, considering the pressures of climate change and high atmospheric N-deposition on the fen, it is uncertain whether rich fen species can be sustained in quite nutrient-poor conditions in the future. Therefore, there is a need for continued management that keeps the nutrient-poor and mineral-rich conditions of the fen intact.

  相似文献   

2.
Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long‐lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections.  相似文献   

3.
Question: Why is bryophyte succession in eutrophicated fens faster than in natural fens? Location: Mineral‐rich fens in The Netherlands and NW Europe. Methods: Literature review on the ecology of four bryophyte species in various successional types as observed in Dutch fens. Results: Bryophyte succession in eutrophicated fens from the brown moss Calliergonella cuspidata to Sphagnum squarrosum is much faster than in natural fens with species shifts from Scorpidium scorpioides to Sphagnum subnitens. Under P‐poor conditions, the brown moss stage is stabilized as long as mineral‐rich water is supplied. This is because S. scorpioides is tolerant of rainwater, is a strong competitor and can counteract acidification to some extent while S. subnitens is intolerant to groundwater and has low growth rates and low acidification capacity. In contrast, the Sphagnum stage is stable after rapid succession from rich‐fen mosses under P‐rich conditions. Calliergonella cuspidata has suboptimal growth in rainwater, possibly due to ammonium toxicity, while the high growth rates of S. squarrosum in nutrient‐rich and highly acidic groundwater allow early establishment and rapid expansion. Conclusions: If measures to improve fen base status occur in environments of increased nutrient (P) availability, the management may not lead to the desired restoration of brown moss stages, but instead to rapid acidification by S. squarrosum.  相似文献   

4.
Peat layers are well represented in the Holocene coastal deposits of the southern North Sea and provide evidence as to the extent and nature of the fens and bogs that occupied the region in the mid and late Holocene. While natural processes contributed to their demise, without human interference extensive areas of peatland would remain. We review the characteristics of the vegetation of these peatlands along with the processes that influenced their development. Spatial and temporal trends are explored through the use of palaeogeographic maps from three areas: the East Anglian Fenland, the Romney Marsh area and the Netherlands. The palaeoecological evidence indicates that eutrophic vegetation promoted by rising relative sea level (RSL) dominated in the mid Holocene, with a trend towards the development of oligotrophic and ombrotrophic vegetation in the late Holocene as the rate of RSL rise declined. Nevertheless, areas of eutrophic vegetation appear capable of long-term stability with areas of fen woodland and herbaceous fen persisting at some locations for several thousand years in the mid and late Holocene. Areas of active peat growth in the region are now largely confined to small remnants within agricultural settings. To retain their characteristic biodiversity these remnants have been managed using traditional practices, although their small size and fragmented distribution limits their biodiversity value. Biodiversity concerns and the ecosystem services peatlands provide, notably carbon sequestration and flood attenuation, underlie recent restoration projects. These efforts are likely to receive additional impetus as a consequence of rising water levels, given projected rates of RSL rise. Future large-scale restoration can be informed by a greater understanding of the processes that formed and sustained coastal peatlands in the past. We identify advances in palaeoenvironmental research that could enhance restoration efforts and help maximise the ecosystem services delivered through such projects.  相似文献   

5.
Question: Which restoration measures (reintroduction techniques, reintroduction timing and fertilization) best enable the establishment of fen species on North American cut‐away peatlands? Location: Rivière‐du‐Loup peatland, southern Québec, Canada. Methods: In total, eight treatments which tested a combination of two reintroduction techniques, two reintroduction timings and the use of phosphorus fertilization were tested in a field experiment within a completely randomized block design. Results: Sphagnum transfer, a reintroduction technique commonly used for bog restoration in North America, was effective for establishing Sphagnum and Carex species. The hay transfer method, commonly used for fen restoration in Europe, was much less successful, probably due to questionable viability of reintroduced seeds. The treatments which included light phosphorus fertilization, had a higher Carex cover after three growing seasons. The timing of the reintroductions had no impact on the success of vegetation establishment. However, vegetation reintroduction should be carried out in the spring while the ground is still frozen to minimize other ecological impacts. Conclusions: The success of the diaspore reintroduction technique on small‐scale units indicates that a large‐scale restoration of fens using this technique is feasible.  相似文献   

6.
Question: Can the biodiversity of fens in Europe and North America be maintained through the use of grazing (especially cattle grazing), fire, and/or cutting? Location: European and North American fens. Methods: This paper is a review of the literature on the effects of grazing, fire and cutting on fens, to explore the relationship between management and biodiversity in fens. Results: A reduction of cattle grazing, mowing and burning in fens has led to a reduction in biodiversity in fens. The vegetation of abandoned fens shifts to trees and shrubs after 10–15 years, which shade the smaller and rarer species of these wetlands. While careful use of fire is used to manage fens in North America, it is not widely used in European fens, perhaps because the peat of drained fens may catch fire. Cattle grazing cannot be considered a natural disturbance in North America, since cattle did not evolve on that continent. In Europe, cattle do not generally graze in unaltered fens, but they do use slightly drained fen meadows. Conclusions: Three approaches have been used to control the dominance of tall woody and herbaceous species in abandoned fens, including the re‐introduction of cattle, mowing, and burning. Overgrazing results in a permanent reduction in biodiversity, therefore cattle re‐introduction must be approached cautiously. In Europe, but not in North America, mowing has been an important management tool, and mowing has been successful in maintaining species richness, particularly in fens that have been mowed annually for centuries. Fire has been the most common and successful management tool in North America although it is not effective in removing shrubs that have become large. Because the problems and solutions are similar, the literature of both European and North American fen management can be analyzed to better assess the management of fens on both continents. Many management questions require further study and these are listed in the paper.  相似文献   

7.
1. Effects of the frequency and duration of flooding on the structural and functional characteristics of riparian vegetation were studied at four sites (n = 80, 50 × 50 cm, plots) along medium‐sized naturally meandering lowland streams. Special focus was on rich fens, which – due to their high species richness – are of high priority in nature conservation. 2. Reed beds, rich fens and meadows were all regularly flooded during the 20‐year study period, with a higher frequency in reed bed areas than in rich fen and meadow areas. In rich fens, species richness was higher in low frequency flooded areas (≤3 year?1) than in areas with a high frequency of flooding (>3 year?1) or no flooding, whereas species richness in reed beds and meadows was unaffected by flood frequency. 3. The percentage of stress‐tolerant species was higher in low intensity flooded rich fen areas than in high intensity and non‐flooded areas, indicating that the higher species richness in low frequency flooded rich fens was caused by competitive release. We found no indication that increased productivity was associated with high flooding frequencies. 4. We conclude that the restoration of morphological features in stream channels to increase the flooding regime can be beneficial for protected vegetation within riparian areas, but also that groundwater discharge thresholds and critical levels for protected vegetation should be identified and considered when introducing stream ecosystem restoration plans.  相似文献   

8.
The majority of fens in Europe have been transformed for agricultural purposes and have disappeared or become degraded. Fen meadows that developed under low-intensity management of fens also have become degraded. In this paper, we consider the available restoration methods, biotic constraints for restoration and new prospects and approaches for the restoration of severely degraded fens. Due to irreversible changes in landscape settings, hydrology, soil and trophic conditions, a full restoration to natural mires is unlikely. Yet, an improvement of the ecosystem functions and revival of biodiversity in degraded fens is possible. A restoration of semi-natural meadows is one of the alternative targets. Important for restoration efforts to succeed are a sufficient reduction of nutrient levels and preventing acidification. In general, a combination of topsoil removal and seed transfer is an effective measure for fen meadow restoration, provided that groundwater seepage can be re-established. There are also several biotic limitations to fen meadow restoration, due to limited propagule availability of target species and the legacy of the former vegetation in form of its soil seed bank and high seed production by unwanted species. Under the present environmental conditions, the re-development of fen meadows on degraded fens will result in species compositions different from those observed in the past and such restoration may require considerable time and effort.  相似文献   

9.
Floating fens are species‐rich succession stages in fen areas in the Netherlands. Many of these fens are deteriorating due to acidification; Sphagnum species and Polytrichum commune build 10–25 cm thick moss carpets, and the species diversity decreases. Earlier experiments in wet ecosystems indicate that successful restoration of circum‐neutral and mesotrophic conditions requires a combination of hydrological measures and sod removal. In an acidified fen recharged by rainwater in the nature reserve Ilperveld (The Netherlands), a ditch/trench system was dug for the purpose of creating a run‐off channel for acid rainwater in wet periods and to enable circum‐neutral surface water to enter the fen in dry periods. Moreover, the sod was removed in part of the fen. Ditch/trench creation or sod cutting had no effect individually, but a combination of the two measures led to a change in the abiotic conditions (higher pH and Ca), and in turn to an increase of species‐richness and the reestablishment of a number of characteristic species. Reestablishment of rare vascular plant species and characteristic bryophytes might be a long‐term process because of incomplete recovery of site conditions and constraints in seed dispersal.  相似文献   

10.
The aim of the study was to assess the effects of fen rewetting on carabid beetle and vascular plant assemblages within riverine fens along the river Peene in north‐eastern Germany. Drained (silage grassland), rewetted (restored formerly drained silage grassland), and near‐natural (fairly pristine) stands were compared. Eighty‐four beetle species (7,267 individuals) and 135 plant species were recorded. The richness of vascular plant species and the number of endangered species were highest on near‐natural fens. Fourteen years of rewetting did not increase plant species numbers compared with drained fens. For carabid beetles, however, species richness and the number of stenotopic species were highest on rewetted fens. Rewetting caused the replacement of generalist carabids by wetland specialists, but did not provide suitable habitat for specialist fen carabids or for plant species of oligo‐ or mesotrophic fen communities. Therefore, raising the water table on fens with nutrient‐rich, degraded peat was not sufficient for restoring species assemblages of intact fens, although water level was the most important environmental factor separating species assemblages. Our study illustrated that insects and plants may respond differentially to restoration, stressing the need to consider different taxa when assessing the efficiency of fen restoration. Furthermore, species assemblages of intact fens could not be restored within 14 years, highlighting the importance of conserving pristine habitat.  相似文献   

11.
Fen bryophytes are an important component of natural fens and should be included in fen restoration projects. The goal of this study was to examine the regeneration capabilities of nine bryophytes common to moderate-rich and poor fens in North America. A greenhouse experiment was carried out to examine the limitations and optima for the regeneration of fen bryophytes under different light and water regimes. A field experiment tested these same bryophytes in the presence of three potential nurse-plants. In the greenhouse experiment, the presence of shade increased regeneration success for eight out of nine species. A high water level was ideal for the regeneration of the majority of species tested. In the field experiment, Sphagnum species had the highest regeneration, and all species had higher regeneration under a dense canopy of herbaceous plants. Fen bryophytes show good potential for use in restoration projects because the tested bryophytes regenerated well from fragments.  相似文献   

12.
Question: Which restoration measures (introduction of donor diaspore material, application of straw mulch, alteration of residual peat depths) contribute to the establishment of a fen plant community on minerotrophic surfaces after peat mining? Location: Rivière‐du‐Loup peatland, southern Québec, Canada at 100 m a.s.1. Methods: The effectiveness of introducing fen plants with the application of donor diaspore material was tested. The donor diaspore material, containing seeds, rhizomes, moss fragments, and other plant propagules, was collected from two different types of natural fens. We tested whether the application of straw mulch would increase fen species cover and biodiversity compared to control plots without straw mulch. Terrace levels of different peat depths (15 cm, 40 cm, and 56 cm) were created to test the effects of different environmental site conditions on the success of re‐vegetation. Results: Applying donor seed bank from natural fens was found to significantly increase fen plant cover and richness after the two growing seasons. Straw mulch proved to significantly increase fen plant richness. The intermediate terrace level (40 cm) had the highest fen plant establishment. Compared to reference sites, the low terrace level (15 cm) was richer in base cations, whereas the high terrace level (56 cm) was much drier. Conclusions: The application of donor diaspore material was demonstrated as an effective technique for establishing vascular fen plants. Further re wetting measures are considered necessary at the restoration site to create a fen ecosystem rather than simply restoring some fen species.  相似文献   

13.
Young coastal fens are rare ecosystems in the first stages of peatland succession. Their drainage compromises their successional development toward future carbon (C) reservoirs. We present the first study on the success of hydrological restoration of young fens. We carried out vegetation surveys at six young fens that represent undrained, drained, and restored management categories in the Finnish land uplift coast before and after restoration. We measured plant level carbon dioxide (CO2) assimilation and chlorophyll fluorescence (Fv/Fm) from 17 most common plant species present at the sites. Within 5 years of restoration, the vegetation composition of restored sites had started to move toward the undrained baseline. The cover of sedges increased the most in response to restoration, while the cover of deciduous shrubs decreased the most. The rapid response indicates high resilience and low resistance of young fen ecosystems toward changes in hydrology. Forbs had higher photosynthetic and respiration rates than sedges, deciduous shrubs, and grasses, whereas rates were lowest for evergreen shrubs and mosses. The impact of management category on CO2 assimilation was an indirect consequence that occurred through changes in plant species composition: Increase in sedge cover following restoration also increased the potential photosynthetic capacity of the ecosystem. Synthesis and applications. Restoration of forestry drained young fens is a promising method for safeguarding them and bringing back their function as C reservoirs. However, their low resistance to water table draw down introduces a risk that regeneration may be partially hindered by the heavy drainage in the surrounding landscape. Therefore, restoration success is best safeguarded by managing the whole catchments instead of carrying out small‐scale projects.  相似文献   

14.
A comparison of fens in natural and artificial landscapes   总被引:3,自引:0,他引:3  
Fens depend on inputs of groundwater or surface water. In Western Europe especially soligenous fens, receiving groundwater, are threatened by human hydrological intervention. We demonstrate the impact of artificial versus natural hydrologies on such fens by comparing 3 case areas: the Biebrza valley (reference) and the Gorecht and Vecht river plains (both reclaimed and drained). The patterns found in the fairly undisturbed Biebrza area suggest local water quality is governed by a strong regional groundwater flow emerging in the fen near the valley margins and seeping through it down to the river. Hence water quality gradients are smooth: there is little variation in water type over large distances. The pattern is determined by the natural geomorphology. In the reclaimed Vecht and Gorecht river plains large differences exist at short distance. Regional water flow from the adjacent ridges into the plains is weak here and governed primarily by water management (polders and pumping wells). However, the relations between specific water types and fen species and communities in this artificial pattern are quite similar to those found in the natural landscape. Low-productive rich fens are fed by calcium-rich and base-rich, nutrient-poor groundwater in both cases. While conservation of such rich fens is served best by maintaining the natural groundwater flow, some opportunities for restoration with an artificial hydrology are discussed.  相似文献   

15.
Question: Why do similar fen meadow communities occur in different landscapes? How does the hydrological system sustain base‐rich fen mires and fen meadows? Location: Interdunal wetlands and heathland pools in The Netherlands, percolation mires in Germany, Poland, and Siberia, and calcareous spring fens in the High Tatra, Slovakia. Methods: This review presents an overview of the hydrological conditions of fen mires and fen meadows that are highly valued in nature conservation due to their high biodiversity and the occurrence of many Red List species. Fen types covered in this review include: (1) small hydrological systems in young calcareous dune areas, and (2) small hydrological systems in decalcified old cover sand areas in The Netherlands; (3) large hydrological systems in river valleys in Central‐Europe and western‐Siberia, and (4) large hydrological systems of small calcareous spring fens with active precipitation of travertine in mountain areas of Slovakia. Results: Different landscape types can sustain similar nutrient poor and base‐rich habitats required by endangered fen meadow species. The hydrological systems of these landscapes are very different in size, but their ground water flow pattern is remarkably similar. Paleoecological research showed that travertine forming fen vegetation types persisted in German lowland percolation mires from 6000 to 3000 BP. Similar vegetation types can still be found in small mountain mires in the Slovak Republic. Small pools in such mires form a cascade of surface water bodies that stimulate travertine formation in various ways. Travertine deposition prevents acidification of the mire and sustains populations of basiphilous species that elsewhere in Europe are highly endangered. Conclusion: Very different hydrological landscape settings can maintain a regular flow of groundwater through the top soil generating similar base‐rich site conditions. This is why some fen species occur in very different landscape types, ranging from mineral interdunal wetlands to mountain mires.  相似文献   

16.
In North America, mulching of vacuum-harvested sites combined with blocking of the drainage system is widely used for peatland restoration to accelerate Sphagnum establishment. However, peat extraction in fen peatlands or exposure of deeper minerotrophic peat layers results in soil chemistry that is less suitable for re-establishment of Sphagnum moss. In this situation, restoration of plant species characteristic of minerotrophic peatlands is desirable to return the site to a carbon accumulating system. In these cases, it may be worthwhile to maintain spontaneously revegetating species as part of restoration if they provide desirable ecosystem functions. We studied the role of six spontaneously recolonizing vegetation communities for methane (CH4) emissions and pore water CH4 concentration for two growing seasons (2008 and 2009) at an abandoned minerotrophic peatland in southeastern Quebec. We then compared the results with bare peat and adjacent natural fen vegetation. Communities dominated by Eriophorum vaginatum, Carex aquatilis and Typha latifolia had CH4 flux an order of magnitude greater than other cutover vegetation types and natural sites. In contrast, Scirpus atrocinctus and Equisetum arvense had CH4 emission rates lower than natural hollow vegetation. We found seasonal average water table and vegetation volume had significant correlation with CH4 flux. Water table and soil temperature were significantly correlated with CH4 flux at plots where the water table was near or above the surface. Pore water CH4 concentration suggests that CH4 is being produced at the cutover peatland and that low measured fluxes likely result from substantial oxidation of CH4 in the unsaturated zone. Understanding ecosystem functions of spontaneously recolonizing species on cutover fens can be used to help make decisions about the inclusion of these communities for future restoration measures.  相似文献   

17.
The relationships between vegetation components, surface water chemistry and peat chemistry from 23 fens in boreal Alberta, Canada, substantiate important differences along the poor to rich fen gradient. Each of the three fen types have their own characteristic species. The extreme-rich fens are characterized by Calliergon trifarium, Drepanocladus revolvens, Scirpus hudsonianus, S. cespitosus, Scorpidium scorpioides, and Tofieldia glutinosa. Moderate-rich fens are characterized by Brachythecium mildeanum, Carex diandra, Drepanocladus vernicosus, D. aduncus, and D. polycarpus. Poor fens are characterized by Carex pauciflora, Drepanocladus exannulatus, Sphagnum angustifolium, S. jensenii, and S. majus. Moderate-rich fens have fewer species in common with poor fens than with extreme-rich fens, while species richness is highest in the moderate-rich fens and lowest in poor fens. Variation in vascular plant occurrence appears to be more associated with nutrient levels, while bryophytes are more affected by changes in acidity and mineral elements. Based on chemical criteria, the three fen types are clearly separated by surface water pH, calcium, magnesium, and conductivity, but are less clearly differentiated by the nitrogen and phosphorus components of the surface waters. Moderate-rich fens are chemically variable both temporally and spatially, whereas poor fens and extreme-rich fens are more stable ecosystems. Whereas components of alkalinity-acidity are the most important factors that distinguish the three fen types in western Canada, nutrient concentrations in the surface waters generally do not differ appreciably in the three fen types.  相似文献   

18.
Quaking rich fens dominated by boreal semi-aquatic brown-mosses such as Scorpidium scorpioides and Calliergon trifarium are extremely rare in the Carpathians. These fens harbour endangered species persisting at few localities in the region. However, their phytosociological classification has not been sufficiently solved yet, because they lack Sphagnum species as well as calcicole species characteristic for the Caricion davallianae alliance. A recent pan-European synthesis on fen vegetation suggests that these fens belong to the Stygio-Caricion limosae alliance (boreal rich fen vegetation). The isolated occurrence of this alliance southward of the boreal zone and outside the Alps is rather exceptional and might represent a relict from an early post-glacial period. In this study, we compared phytosociological data for the Stygio-Caricion limosae alliance between Northern Europe and the Carpathians plus adjacent regions (the Bohemian Massif, the Dinaric Alps) using NMDS and cluster analysis. We found that the species composition of brown-moss quaking rich fens in Central and Southeastern Europe corresponds well with that in Northern Europe, confirming their assignment to Stygio-Caricion limosae. We further reconstructed the potential past distribution of the alliance in Czech Republic and Slovakia using available floristic and macrofossil data. Macrofossil data suggest that this vegetation type had been much more common in Central Europe and that today it persists only in ancient fens, showing the long-term stability of environmental conditions. The main causes of its present-day rarity are Middle-Holocene woodland phases in fens and recent water table decreases caused by anthropogenic deterioration of the water regime in the landscape.  相似文献   

19.
Environmental stress is the main cause of the decline of species diversity in low‐productive fen meadows in the Netherlands. Attempts to restore species diverse fen meadows e.g. by sod cutting frequently fail. We supposed that unsuccessful efforts are due to ignoring the impact of environmental stress on the performance of soil biota, which play a key role in N‐immobilization and keeping available‐N for primary production low. We investigated both pristine and degraded natural sites and successfully and unsuccessfully restored sites of poor and rich fen meadows. We determined plant species composition, soil chemical properties, N‐pools in soil biota, N‐mineralization rates, and N‐fluxes. In pristine rich and poor fen meadows, mineral‐N was poorly available for primary production due to a strong N‐immobilization by soil biota. Annual N‐immobilization fluxes exceeded by far the annual N‐harvest by primary production. N‐immobilization in pristine fens was higher than in degraded fens. In successfully restored rich fens, net N‐mineralization was lower and N‐immobilization higher than in the unsuccessful category. From our results, we derived the hypothesis that in degraded or in unsuccessfully restored fens the soils internal N‐balance shifted from N‐immobilization to net N‐mineralization, favoring biomass production but disadvantaging plant species diversity. N‐retention driven by an active N‐immobilizing soil biological community, is likely a decisive process for successful recovery of plant species diversity in low productive fen meadows. We recommend that restoration techniques should stimulate a functionally diverse soil fauna, as this may enhance the storage of available nutrients in the soil food web.  相似文献   

20.
The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional “pipeline” consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号