共查询到20条相似文献,搜索用时 0 毫秒
1.
Branislav Igic Jessica McLachlan Inkeri Lehtinen Robert D. Magrath 《Proceedings. Biological sciences / The Royal Society》2015,282(1809)
Animals often mimic dangerous or toxic species to deter predators; however, mimicry of such species may not always be possible and mimicry of benign species seems unlikely to confer anti-predator benefits. We reveal a system in which a bird mimics the alarm calls of harmless species to fool a predator 40 times its size and protect its offspring against attack. Our experiments revealed that brown thornbills (Acanthiza pusilla) mimic a chorus of other species'' aerial alarm calls, a cue of an Accipiter hawk in flight, when predators attack their nest. The absence of any flying predators in this context implies that these alarms convey deceptive information about the type of danger present. Experiments on the primary nest predators of thornbills, pied currawongs (Strepera graculina), revealed that the predators treat these alarms as if they themselves are threatened by flying hawks, either by scanning the sky for danger or fleeing, confirming a deceptive function. In turn, these distractions delay attack and provide thornbill nestlings with an opportunity to escape. This sophisticated defence strategy exploits the complex web of interactions among multiple species across several trophic levels, and in particular exploits a predator''s ability to eavesdrop on and respond appropriately to heterospecific alarm calls. Our findings demonstrate that prey can fool predators by deceptively mimicking alarm calls of harmless species, suggesting that defensive mimicry could be more widespread because of indirect effects on predators within a web of eavesdropping. 相似文献
2.
3.
Alarm calls are vocalisations animals give in response to predators which mainly function to alert conspecifics of danger. Studies show that numerous species eavesdrop on heterospecific calls to gain information about predator presence. Responding to heterospecific calls may be a learned or innate response, determined by whether the response occurs with or without prior exposure to the call. In this study, we investigated the presence of eavesdropping behaviour in zebra finches Taeniopygia guttata. This species is not known to possess a distinct alarm call to warn adult conspecifics of a threat, and could be relying on alarm calls of nearby heterospecifics for predator information. We used a playback experiment to expose captive zebra finches to three heterospecific sounds: an unfamiliar alarm call (from the chestnut‐rumped thornbill Acanthiza uropygialis), a familiar alarm call, and a familiar control (both from the noisy miner Manorina melanocephala). These calls were chosen to test if the birds had learnt to distinguish between the function of the two familiar calls, and if the acoustic properties of the unfamiliar alarm indicated presence of a threat to the finches. Our results showed that in response to the thornbill alarm, the birds reduced the rate of production of short calls. However, this decrease was also seen when considering both short and distance calls in response to the control sound. An increase in latency to call was also seen after the control stimulus when compared to the miner alarm. The time spent scanning increased in response to all three stimuli, but this did not differ between stimuli. There were no significant differences when considering the stimulus by time interaction for any of the three vigilance measures. Overall, no strong evidence was found to indicate that the captive zebra finches were responding to the heterospecific alarm stimuli with anti‐predator behaviour. 相似文献
4.
Flower T 《Proceedings. Biological sciences / The Royal Society》2011,278(1711):1548-1555
Despite the prevalence of vocal mimicry in animals, few functions for this behaviour have been shown. I propose a novel hypothesis that false mimicked alarm calls could be used deceptively to scare other species and steal their food. Studies have previously suggested that animals use their own species-specific alarm calls to steal food. However none have shown conclusively that these false alarms are deceptive, or that mimicked alarm calls are used in this manner. Here, I show that wild fork-tailed drongos (Dicrurus adsimilis) make both drongo-specific and mimicked false alarm calls when watching target species handling food, in response to which targets flee to cover abandoning their food. The drongo-specific and mimicked calls made in false alarms were structurally indistinguishable from calls made during true alarms at predators by drongos and other species. Furthermore, I demonstrate by playback experiments that two of these species, meerkats (Suricata suricatta) and pied babblers (Turdoides bicolor), are deceived by both drongo-specific and mimicked false alarm calls. These results provide the first conclusive evidence that false alarm calls are deceptive and demonstrate a novel function for vocal mimicry. This work also provides valuable insight into the benefits of deploying variable mimetic signals in deceptive communication. 相似文献
5.
Prey animals can reduce their risk of predation by detecting potential predators before encounters occur. Some animals gain information about nearby predators by eavesdropping on heterospecific alarm calls. Despite having well-developed ears, most lizards do not use vocal information for intraspecific communication, and few studies have shown practical use of the ears in wild lizards. Here, we show that the Madagascan spiny-tailed iguana (Oplurus cuvieri cuvieri) obtains auditory signals for predator detection. The Madagascan spiny-tailed iguana and the Madagascar paradise flycatcher (Terpsiphone mutata) are syntopic inhabitants of the Ampijoroa dry deciduous forest of Madagascar. The iguana and the flycatcher have neither a predator–prey relationship nor resource competition, but they have shared predators such as raptors and snakes. Using playback experiments, we demonstrated that the iguana discriminates mobbing alarm calls of the flycatcher from its songs and then enhances its vigilance behaviour. Our results demonstrate the occurrence of an asymmetrical ecological relationship between the Madagascan spiny-tailed iguana and the paradise flycatcher through eavesdropping on information about the presence of predators. This implies that indirect interspecific interactions through information recognition may be more common than generally thought in an animal community. 相似文献
6.
Eckhard W. Heymann Shin S. Hsia 《Biological reviews of the Cambridge Philosophical Society》2015,90(1):142-156
Throughout many regions of the tropics, non‐primate animals – mainly birds and mammals – have been observed to follow primate groups and to exploit dropped food and flushed prey. The anecdotal nature of most of the numerous reports on these primate–non‐primate associations (PNPAs) may obscure the biological significance of such associations. We review the existing literature and test predictions concerning the influence of primate traits (body size, activity patterns, dietary strategies, habitat, group size) on the occurrence of PNPAs. Furthermore, we examine the influence of non‐primates' dietary strategies on the occurrence of PNPAs, and the distribution of benefits and costs. We detected a strong signal in the geographic distribution of PNPAs, with a larger number of such associations in the Neotropics compared to Africa and Asia. Madagascar lacks PNPAs altogether. Primate body size, activity patterns, habitat and dietary strategies as well as non‐primate dietary strategies affect the occurrence of PNPAs, while primate group size did not play a role. Benefits are asymmetrically distributed and mainly accrue to non‐primates. They consist of foraging benefits through the consumption of dropped leaves and fruits and flushed prey, and anti‐predation benefits through eavesdropping on primate alarm calls and vigilance. Where quantitative information is available, it has been shown that benefits for non‐primates can be substantial. The majority of PNPAs can thus be categorized as cases of commensalism, while mutualism is very rare. Our review provides evidence that the ecological function of primates extends beyond their manifold interactions with plants, but may remain underestimated. 相似文献
7.
Lucrezia GORINI John D. C. LINNELL Roel MAY Manuela PANZACCHI Luigi BOITANI Morten ODDEN Erlend. B. NILSEN 《Mammal Review》2012,42(1):55-77
- 1 In predator–prey theory, habitat heterogeneity can affect the relationship between kill rates and prey or predator density through its effect on the predator's ability to search for, encounter, kill and consume its prey. Many studies of predator–prey interactions include the effect of spatial heterogeneity, but these are mostly based on species with restricted mobility or conducted in experimental settings.
- 2 Here, we aim to identify the patterns through which spatial heterogeneity affects predator–prey dynamics and to review the literature on the effect of spatial heterogeneity on predator–prey interactions in terrestrial mammalian systems, i.e. in freely moving species with high mobility, in non‐experimental settings. We also review current methodologies that allow the study of the predation process within a spatial context.
- 3 When the functional response includes the effect of spatial heterogeneity, it usually takes the form of predator‐dependent or ratio‐dependent models and has wide applicability.
- 4 The analysis of the predation process through its different stages may further contribute towards identifying the spatial scale of interest and the specific spatial mechanism affecting predator–prey interactions.
- 5 Analyzing the predation process based on the functional response theory, but separating the stages of predation and applying a multiscale approach, is likely to increase our insight into how spatial heterogeneity affects predator–prey dynamics. This may increase our ability to forecast the consequences of landscape transformations on predator–prey dynamics.
8.
9.
10.
Survivorship in animals depends on both foraging activities and avoidance of predation, and thus behavioural decisions often reflect a trade‐off between predation risk and foraging efficiency. In this experimental study, we compared behavioural responses of free‐living adult and juvenile Willow Tits Poecile montanus to a conspecific alarm call in two treatments. The alarm call was played back when a focal bird was either not feeding, or feeding on a sunflower seed on the middle part of a spruce branch. When feeding at the time of the alarm call, juveniles more often stayed motionless or moved shorter distances than adults. Our results suggest that in hierarchical groups, juveniles are forced to take greater risks to maintain access to food or lack experience to optimize between food and safety. 相似文献
11.
- Pathogens can increase vulnerability to predation through their harmful effects on hosts. Recently, it was shown that the mere activation of the immune system by pathogens may increase the host's risk of predation. Here, we test whether exposure to non‐pathogenic bacteria also activates the immune system and thereby increases vulnerability to predation.
- We exposed Enallagma cyathigerum damselfly larvae to a non‐pathogenic strain of the bacterium Escherichia coli and measured immune defence, anti‐predator behaviour and survival times in the presence of larval dragonfly predators. To evaluate whether non‐pathogenic bacteria also generated energy‐based trade‐offs leading to other fitness costs, we also quantified growth rate and survival in the absence of predators.
- Exposure to the non‐pathogenic bacterium did not affect survival in the absence of the predator but increased growth rate, possibly a response to reduce exposure time to the bacterium. Larvae exposed to the bacterium activated their immune response as shown by an increase in the activity of phenoloxidase and the number of haemocytes. The bacterium affected anti‐predator traits involved in avoiding detection by predators as well as traits involved in escape after detection. Pre‐exposed larvae showed higher activity levels and further increased the number of feeding strikes in the presence of predation risk, possibly driven by energetic constraints. Pre‐exposed larvae swam less often when attacked, but faster. This impaired anti‐predator response came at the ecological cost of increased vulnerability to predation.
- Our study demonstrated that exposure to non‐pathogenic bacteria increases vulnerability to predation, which is a novel type of antagonistic interaction. This highlights the unexplored possibility that non‐pathogens may play a role in maintaining variation in immune defence through insidious effects on predator–prey interactions. Since non‐pathogenic bacteria can be very abundant, this unexplored ecological cost of immune system activation in terms of increased predation may have major consequences in natural systems and may provide an unexplored new force underlying variation in immune defence.
12.
C. Blut J. Wilbrandt D. Fels E.I. Girgel K. Lunau 《Entomologia Experimentalis et Applicata》2012,143(3):231-244
Many species of lepidoptera bear conspicuous circular patterns on their wings, known as eyespots, that are hypothesised to protect their bearers against predatory birds. In this study, we focus on a small but ubiquitous feature occurring naturally in lepidopteran eyespots, namely the so‐called ‘sparkle’. The ‘pupil’ in an eyespot is often highlighted by a ‘sparkle’, which is hypothesised to mimic a natural corneal total light reflection evident as a highlight, twinkle, or sparkle in the vertebrate eye. In a study exploring the presence of such sparkles, we found that 53% of lepidopteran eyespots exceeding 1 mm in diameter have a central, pinpoint‐like ‘sparkle’, 12% have a marginal, crescent‐shaped ‘sparkle’, 13% have a semi‐circular ‘sparkle’, and 22% have an intermediate semi‐circular to crescent‐shaped ‘sparkle’. In the lepidopterans’ natural resting position, the marginal ‘sparkles’ are positioned in the upper part of the eyespots’‘pupil’ and thus may create the illusion of a spherical eyeball. The ‘sparkles’ in lepidopteran eyespots do not only appear white to humans, but also reflect ultraviolet light. White and UV‐reflecting ‘sparkles’ also appear ‘white’ for UV‐sensitive viewers such as birds, and thus may effectively mimic the natural highlight in vertebrate eyes as an area of total light reflection. In field experiments using lepidopteran dummies baited with a mealworm, we show that the ‘sparkle’ is one of several components of eyespots eliciting a deterrent effect and that eyespots with a ‘sparkle’ in a natural position have a stronger deterrent effect than those with a ‘sparkle’ in an unnatural position. These findings support the eye mimicry hypothesis that better vertebrate eye mimicry improves the deterrent effect of eyespots. 相似文献
13.
JOHN SKELHORN HANNAH M. ROWLAND GRAEME D. RUXTON 《Biological journal of the Linnean Society. Linnean Society of London》2010,99(1):1-8
Many organisms appear to mimic inanimate objects such as twigs, leaves, stones, and bird droppings. Such adaptations are considered to have evolved because their bearers are misidentified as either inedible objects by their predators, or as innocuous objects by their prey. In the past, this phenomenon has been classified by some as Batesian mimicry and by others as crypsis, but now is considered to be conceptually different from both, and has been termed ‘masquerade’. Despite the debate over how to classify masquerade, this phenomenon has received little attention from evolutionary biologists. Here, we discuss the limited empirical evidence supporting the idea that masquerade functions to cause misidentification of organisms, provide a testable definition of masquerade, and suggest how masquerade evolved and under what ecological conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 1–8. 相似文献
14.
Eben Goodale;Robert D. Magrath; 《Biological reviews of the Cambridge Philosophical Society》2024,99(3):999-1014
Interspecific information flow is known to affect individual fitness, population dynamics and community assembly, but there has been less study of how species diversity affects information flow and thereby ecosystem functioning and services. We address this question by first examining differences among species in the sensitivity, accuracy, transmissibility, detectability and value of the cues and signals they produce, and in how they receive, store and use information derived from heterospecifics. We then review how interspecific information flow occurs in communities, involving a diversity of species and sensory modes, and how this flow can affect ecosystem-level functions, such as decomposition, seed dispersal or algae removal on coral reefs. We highlight evidence that some keystone species are particularly critical as a source of information used by eavesdroppers, and so have a disproportionate effect on information flow. Such keystone species include community informants producing signals, particularly about predation risk, that influence other species' landscapes of fear, and aggregation initiators creating cues or signals about resources. We suggest that the presence of keystone species means that there will likely be a positive relationship in many communities between species diversity and information through a ‘sampling effect’, in which larger pools of species are more likely to include the keystone species by chance. We then consider whether the number and relative abundance of species, irrespective of the presence of keystone species, matter to interspecific information flow; on this issue, the theory is less developed, and the evidence scant and indirect. Higher diversity could increase the quantity or quality of information that is used by eavesdroppers because redundancy increases the reliability of information or because the species provide complementary information. Alternatively, there could be a lack of a relationship between species diversity and information if there is widespread information parasitism where users are not sources, or if information sourced from heterospecifics is of lower value than that gained personally or sourced from conspecifics. Recent research suggests that species diversity does have information-modulated community and ecosystem consequences, especially in birds, such as the diversity of species at feeders increasing resource exploitation, or the number of imitated species increasing responses to vocal mimics. A first step for future research includes comprehensive observations of information flow among different taxa and habitats. Then studies should investigate whether species diversity influences the cumulative quality or quantity of information at the community level, and consequently ecosystem-level processes. An applied objective is to conserve species in part for their value as sources of information for other species, including for humans. 相似文献
15.
- Predation is a major evolutionary force driving speciation. Identifying the stimuli prompting anti‐predator responses is essential for unravelling the proximate mechanisms of anti‐predator adaptations and for understanding how predation impacts species diversification.
- Here, we explore for the first time the divergence in the use of cues of predation risk by different incipient species of mosquitoes within the Anopheles gambiae complex. We examined the anti‐predator responses to various predation cues by the aquatic larvae of Anopheles arabiensis and the two molecular forms, M and S, of Anopheles gambiae s.s. sampled from wild populations in Burkina Faso naturally exposed to different predator densities.
- The larvae altered their behaviour in response to various predation cues, shifting from the surface of the water to a less exposed location on the walls of the experimental arena. There were important differences in the use of predation cues between populations sharing the same larval development sites and, within the M form, related to predation pressure at their site of origin. Anopheles arabiensis larvae, which develop in small temporary waterbodies, relied only on physical cues signalling the presence of a predator to mount a vigilance response, whereas the sympatric larvae of the M and S forms of An. gambiae used both physical and chemical cues to fine‐tune their response. M‐form larvae, developing in permanent aquatic habitats with high densities of predators, responded chiefly to chemical stimuli ensuing from acute predation.
- Our results suggest that predation might play a role as a disruptive selective force promoting ecological divergence within the An. gambiae complex and, more recently, between the M and S molecular forms. Notably, beyond interspecific differences in the use of predation cues, our study also documented phenotypic differences within the M form based on predation pressure at their site of origin, suggesting that a process of ecological divergence is generating species ‘forerunners’ within the An. gambiae complex in the wild.
16.
Nest structures are essential for successful reproduction in most bird species. Nest construction costs time and energy, and most bird species typically build one nest per breeding attempt. Some species, however, build more than one nest, and the reason for this behaviour is often unclear. In the Grey Fantail Rhipidura albiscapa, nest abandonment before egg‐laying is very common. Fantails will build up to seven nests within a breeding season, and pairs abandon up to 71% of their nests before egg‐laying. We describe multiple nest‐building behaviour in the Grey Fantail and test four hypotheses explaining nest abandonment in this species: cryptic depredation, destruction of nests during storm events, and two anti‐predatory responses (construction of decoy nests to confuse predators, and increasing concealment to ‘hide’ nests more effectively). We found support for only one hypothesis – that abandonment is related to nest concealment. Abandoned nests were significantly less concealed than nests that received eggs. Most abandoned nests were not completely built and none received eggs, thus ruling out cryptic predation. Nests were not more likely to be abandoned following storm events. The decoy nest hypothesis was refuted as abandoned nests were constructed at any point during the breeding season and some nests were dismantled and the material used to build the subsequent nest. Thus, Grey Fantails are flexible about nest‐site locations during the nest‐building phase and readily abandon nest locations if they are found to have deficient security. 相似文献
17.
Eben Goodale Chaminda P. Ratnayake Sarath W. Kotagama 《Ethology : formerly Zeitschrift fur Tierpsychologie》2014,120(3):266-274
A growing number of studies have shown that vocal mimicry appears to be adaptive for some bird species, although the exact function of this behaviour varies among species. Previous work has looked at the function of the vocal mimicry of non‐alarm sounds by the Greater Racket‐tailed Drongo (Dicurus paradiseus). But drongos also imitate sounds associated with danger, such as predators' vocalisations or the mobbing‐specific vocalisations of other prey species, raising the question of whether the function of mimicry can vary even within a species. In a playback experiment, we compared the effect on other species of different drongo vocalisations including: (1) predator mimicry, (2) mobbing mimicry, (3) drongo species‐specific alarms, (4) drongo species‐specific non‐alarms and (5) a control (barbet) sound. Both mobbing mimicry and drongo species‐specific alarms elicited flee responses from the most numerous species in the flocks, the Orange‐billed Babbler (Turdoides rufescens). Mobbing mimicry also elicited mobbing responses from the Orange‐billed Babbler and from another gregarious babbler, the Ashy‐headed Laughingthrush (Garrulax cinereifrons); when responses from both species were considered together, they were elicited at a significantly higher level by mobbing mimicry than by the barbet control, and a level that tended to be higher (0.07 < p < 0.10) than the response to drongo‐specific alarms. Predator mimicry elicited flee and mobbing responses at an intermediary level. Our results support the hypotheses that mobbing mimicry is a specific category of mimicry that helps attract the aid of heterospecifics during mobbing and that alarm mimicry can in some cases be beneficial to the caller. 相似文献
18.
Jiangping Yu Xiaoying Xing Yunlei Jiang Wei Liang Haitao Wang Anders Pape Møller 《Ethology : formerly Zeitschrift fur Tierpsychologie》2017,123(8):542-550
Morphological resemblance of the common cuckoo Cuculus canorus to the Eurasian sparrowhawk Accipiter nisus has been regarded as an example of predator mimicry. Common hosts could distinguish parasites as the result of coevolution, while rare hosts or non‐hosts may mistake cuckoos for hawks because rare hosts or non‐hosts behave similarly when faced with these two species. Birds usually produce alarm calls in addition to showing behavioral responses when in danger. However, previous studies of identification by rare hosts or non‐hosts of sparrowhawks usually lacked experimental evidence of alarm calls. Great tits Parus major, a rare cuckoo host, perform similar behaviors and usually produce alarm calls in response to sparrowhawks and common cuckoos. Here, we tested whether great tits could distinguish common cuckoo from sparrowhawk based on analysis of their alarm calls and the effects of playback of alarm calls on conspecific behavior. Previous studies showed that great tits have a complex communication system that conveys information about predators, and they could perform different kinds of response behavior to different alarm calls. If great tits have not made the ability to distinguish between common cuckoo and sparrowhawk, then their acoustic responses to these two species and their response behaviors in playback experiments should be similar. Specimens of a common cuckoo (parasite), a sparrowhawk (predator) and an Oriental turtle dove Streptopelia orientalis (harmless control) were used to elicit and subsequently record the response behavior and alarm calls of great tits. There was no significant difference in behavioral response among great tits when exposed to the dummy of cuckoo, sparrowhawk and dove. In contrast, they differed significantly in alarm calls. Great tits produced more notes per call that contained increasing D‐type and decreasing I‐type notes when responding to sparrowhawk as compared to cuckoo or dove. In playback experiments, we found that great tits responded more strongly to great tit hawk than to great tit cuckoo or great tit dove alarm calls. Our study suggests that great tits are able to distinguish sparrowhawks from common cuckoos and convey relevant information in alarm calls by adjusting the number and combinations of notes of a single call type. 相似文献
19.
We examined innate responses to conspecific and heterospecific alarm cues in a small cyprinid minnow, the Eastern Cape redfin Pseudobarbus afer. We found that redfins respond to conspecific skin extract, which contains alarm chemicals, and showed that their preferred response is to hide in refugia. Redfins also respond to skin extract from an allopatric, distantly related minnow species, the chubbyhead barb Enteromius anoplus indicating that neither sympatry nor close phylogenetic relationships are necessary for recognition of heterospecific alarm cues. Although both conspecific and heterospecific alarm cues induced similar responses, the response to heterospecific cues was less intense. This may be explained by a trade-off between selection to maximise threat recognition and selection to avoid the costs of responding to irrelevant cues, or by differences in chemical structures of alarm cues between species. These findings have implications for the conservation of this Endangered fish species and for freshwater fishes throughout Africa. 相似文献
20.
SARAH M. WHITWELL CHRISTOPHE AMIOT IAN G. MCLEAN TIM G. LOVEGROVE DOUG P. ARMSTRONG DIANNE H. BRUNTON WEIHONG JI 《Austral ecology》2012,37(4):413-418
Translocation of endangered species to habitats where exotic predators have been removed is now a common conservation practice around the world. Many of these translocated populations have thrived, and they are often used as sources for the harvesting of individuals for translocations to sites where exotic predators still exist, albeit at reduced densities. This study investigates how isolation from exotic predators affects the ability of individuals to recognize such predators using the North Island robin (Petroica longipes) as a model. The study was carried out in three robin populations in the North Island, New Zealand: a translocated population on Tiritiri Matangi Island, where exotic mammalian predators are absent; a population reintroduced from Tiritiri Matangi Island to Wenderholm Regional Park, a mainland site where these mammals are controlled to low densities; and a mainland population at Benneydale where exotic predatory mammals are common. The response intensity of robins to a model stoat was high at Benneydale and low at Tiritiri Matangi and Wenderholm. This result indicates that isolation from mammalian predators on Tiritiri Matangi has suppressed the ability of North Island robins to recognize these predators. It is possible that the low predatory mammal densities at Wenderholm have reduced robin contact with stoats, therefore reduced the opportunity for robins to learn to recognize stoats. Thus, translocation of individuals from populations without predators to places where key predators still exist could be unsuccessful if translocated individuals fail to perform appropriate anti‐predator behaviours. 相似文献