首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The basic transport-resistance (TR) model of shoot[ratio]rootcarbon[ratio]nitrogen allocation is described. This approachassumes that the two processes of substrate transport and chemicalconversion determine allocation. It is suggested thatallallocationmodels, whether built for the purposes of theoretical investigationor practical application, should start with this irreducibleframework. Here it is assumed that the processes operate accordingto: (a) for substrate sources, dependence on shoot and rootsizes with possible product inhibition; (b) for transport, movementdown a substrate concentration gradient; and (c) for substratesinks or utilization, linear bisubstrate kinetics. Some dynamicproperties of the model are explored. Failure of this approachto allocation flags the need for additional mechanisms to controlthe processes. Details of the failure will indicate the modificationsneeded, which may involve hormones or reflect teleonomy (apparentlygoal-seeking behaviour), and which are added to the irreducibleframework. However, these additions should not replace the irreducibleframework of transport and chemical conversions, because theydo not in reality. Modifications to the basic model to representpossibilities such as ontogenesis with the transition from exponentialgrowth towards a steady state or with the scaling of within-planttransport resistances with plant size, the influence of hormones,and active transport, are described.Copyright 1998 Annals ofBotany Company Partitioning; allocation; model; shoot[ratio]root relations; plant growth.  相似文献   

2.
When segments excised from the etiolated hypocotyls of Gossypiumhirsutum are pretreated in buffer, the subsequent uptake ofradioactive 2,4-dichlorophenoxyacetic acid (2,4-D-1-14C) isdepressed and the net loss of radioactivity which normally followsa phase of positive uptake by freshly excised segments doesnot take place. Uptake by fresh segments, in contrast with uptakeafter pretreatment, has a high Q10 and is markedly depressedby both 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 3-indolylaceticacid. On these grounds it is proposed that net loss resultsfrom the release of material accumulated by a specific mechanismwhich, with time, becomes inoperative. Additional experimentssuggest that part of the 2,4-D taken up by stem segments ofTriticum vulgare and Avena sativa is accumulated by a similarmechanism. For 1-cm segments, entry is most rapid through the cut ends,and the effects of pretreatment exert their maximal effectsin the tissue near the ends. Therefore very short segments havebeen used to compare the courses of uptake of phenoxyaceticacid (POA) and its 2-, 4-, 2,6-, 2,4- and 2,4,5- chloro- derivatives.The patterns observed are similar to those previously reportedfor 1 -cm segments, although the differences between compoundsare greater. The courses of uptake of 2,4-D and 2,4,5-T, bothterminate in a phase when there is a net loss. POA and the 2-chloro-substitutedacid (2-CPA) are both continuously accumulated. No net lossis found with either the 2,6- (2,6-D) or the 4- chloro (4-CPA)compounds but the rates of uptake progressively decrease toa low level. It is proposed that the processes which determine the patternof uptake of chlorinated phenoxyacetic acids include two typesof accumulation. With Type I accumulation the mechanisms involvedrapidly become disorganized after tissues are excised from theplant. Type 2 accumulation, on the other hand, is stable. Theavailable data indicate that Type I accumulation is peculiarto compounds with marked auxin-like properties.  相似文献   

3.
 The role of dissolved free amino acids (DFAA) in nitrogen and energy budgets was investigated for the giant clam, Tridacna maxima, growing under field conditions at One Tree Island, at the southern end of the Great Barrier Reef, Australia. Giant clams (121.5–143.7 mm in shell length) took up neutral, acidic and basic amino acids. The rates of net uptake of DFAA did not differ between light and dark, nor for clams growing under normal or slightly enriched ammonium concentrations. Calculations based on the net uptake concentrations typical of the maximum concentrations of DFAA found in coral reef waters (∼0.1 μM ) revealed that DFAA could only contribute 0.1% and 1% of the energy and nitrogen demands of giant clams, respectively. These results suggest that DFAA does not supply significant amounts of energy or nitrogen for giant clams or their symbionts. Accepted: 7 October 1998  相似文献   

4.
The recessive of gene, producing tendrils in place of leaves,and the recessive st gene, reducing stipule size, produce phenotypesof pea that are termed leafless (afafstst) and semi-leafless(afafStSt). Photosynthesis and growth of these two types werecompared with the conventional phenotype (AfAfStSt) during thefirst 9 days of post-emergent growth. The conventional seedlingshowed faster net photosynthesis per unit dry weight than theleafless phenotype, whilst the semi-leafless seedlings wereintermediate. Differences in dark respiration were small butleafless seedlings had significantly higher rates soon afteremergence. Where the three phenotypes used were isogenic, except for ofand st, the rates of shoot growth were in the same ranking orderas net CO2 uptake. With three other genotypes, representingthe three phenotypes, more similar shoot growth was found betweenthe conventional and semi-leafless phenotype, possibly becauseof compensating differences in embryonic axis size. The ratesof growth of roots and the rates of dry weight loss from thecotyledons showed no consistent differences between phenotypes. The results are discussed in relation to the potential for thesemi-leafless phenotype as an alternative to the conventionalphenotype for the dried pea crop. Pea seedling, Pisum sativum, leafless pea, photosynthesis, seedling growth  相似文献   

5.
Analysis of continuous culture methodology suggests that this potentially powerful tool for kinetic analysis can be improved by minimizing several inherent shortcomings. Medium background substrates — organic carbon, phosphate, and manganese — were shown to dominate kinetic observations at concentrations below chemical detection methods. Reactor wall growth, culture size distribution changes, sample removal-induced steady state perturbations, and limiting substrate leakage from organisms are treated in terms of kinetic measurement errors. Large variations in maximal growth rates and substrate uptake rates found are attributed to experimental protocol-induced transient states. Relationships are presented for correcting limiting substrate concentrations for lability during sampling, contamination with unreacted medium, and background substrate effects. Analytical procedures are discussed for improved measurement of limiting substrate kinetics involving enzymes, isotopes, and material balance manipulation. Relaxation methods as applied to continuous culture are introduced as a means for isolating separate rate constants describing net substrate transport and for evaluating cellular metabolite leakage. Low velocity growth, multiple substrate metabolism, and endogenous metabolism are discussed along with measurements showing that 1-month generation times for aquatic microorganisms can be quite normal and that the kinetics are compatible withμg/liter limiting substrate concentrations. The concept of regarding growth kinetics as the sum of several net accumulation processes is suggested.  相似文献   

6.
Laboratory simulations were used to investigate the immobilization of dissolved free amino acids (DFAAs) from groundwater discharged up through cores of stream-bed sediments from a first order stream. At natural concentrations, 99% of DFAAs supplied in groundwater were immobilized, with 14–25% of this material respired and the remainder retained in the lower layers of the cores (depth = 7.5 cm). Immobilization efficiencies increased with increasing groundwater DFAA concentrations and discharge rates. Moderate enrichments (up to 1 mg l–1) appeared to stimulate biotic immobilization of DFAAs, while abiotic processes accounted for much of the increased immobilization at higher enrichments (tested up to 100 mg l–1). Variability in groundwater discharge rates induced no changes in the proportional contribution of biotic and abiotic immobilization processes. Thus relative contributions of DFAA concentration and groundwater discharge rate to a given DFAA load (concentration × discharge rate) influenced the degree to which immobilized DFAAs were retained (as microbial biomass or adsorbed to the biofilm) or respired. Results showed that DFAAs in groundwater discharged through the stream-bed are in a highly dynamic state of flux, suggesting that these compounds may be more significant to the transfer of organic matter to the benthic trophic structure than their normally low concentrations in groundwater would imply.  相似文献   

7.
Leaf and whole plant gas exchange rates of Lycopersicon esculentumMill, were studied during several days of continuous exposureto ethylene. Steady-state photosynthesis and transpiration ratesof control and ethylene-treated individual leaves were equivalent.However, the photosynthesis and transpiration rates of treatedleaves required at least five times longer to reach 50% of thesteady-state rate. This induction lag was attributed to ethylene—inducedleaf epinasty and temporary acclimation to lower incident lightlevels immediately prior to measurement of gas exchange. Thewhole plant net carbon exchange rate (NCER) of a representativetreated plant was also reduced by 51% after 24 h exposure toethylene relative to both its pre-treatment rate and that ofthe control. Ethylene exposure reduced the growth rate of thetreated plant by 50% when expressed as carbon (C) gain. Theinhibition of NCER and growth rate associated with epinastywas completely reversed when the epinastic leaves were returnedto their original positions and light interception was re-established.The results demonstrate that the inhibition of whole plant CO2assimilation is indirect and due to reduced light interceptionby epinastic leaves. Morphological changes caused by environmentalethylene are thus shown to reduce plant C accumulation withoutinhibiting leaf photosynthesis processes per se. Key words: Ethylene, carbon assimilation, growth  相似文献   

8.
Seed coats of Phaseolus vulgaris L. unload photosynthetic products,mineral ions and acid into the apoplastic space surroundingthe embryo. We report measurements, on detached seed coats,of the rates of unloading of photosynthates, ions and acid atdifferent external pH and in the presence of treatments intendedto alter the rate of proton pumping. We also report measurementsof membrane potential difference (PD) and of cytoplasmic pHunder the same conditions, measurements which have allowed usto validate the treatments we used and to investigate functionalrelationships between membrane processes. A chemiosmotic model of the seed-coat cell membrane is proposed,in which sucrose efflux and acid efflux are both driven by theproton pump. Sucrose efflux is proposed to occur by sucrose/protonantiport driven by the proton-motive force (PMF), and acid effluxto occur by pumped protons accompanied by a passive efflux ofanions. We use our measurements to estimate the net efflux ofsucrose on the antiporter and the total efflux of protons onthe pump. We have tested the model by using experimental treatments designedto manipulate the pump rate as the independent variable. Underthese conditions, and assuming the model is correct, the pumprate determines the cytoplasmic pH. Over the range covered byour experiments the net sucrose efflux is dependent on externaland cytoplasmic pH, the latter having the major role. The effluxof acid, under the same treatments, depends primarily on theproton pump rate, and was found to be well fitted by a quadraticfunction of pump rate. This means that, as pump rate increases,an increasing proportion of the pump output is used by acidefflux and a decreasing proportion by sucrose antiport. The membrane PD, although an important component of the PMF,does not appear to function in rate control of net sucrose orof acid efflux, since neither efflux is correlated with membranePD under our treatments which vary the pump rate. The PD correlateswell with external potassium concentration, and seems largelydetermined by the diffusion of potassium ions and anions. Key words: Phaseolus vulgaris L, photosynthate efflux, proton pump, sucrose/proton antiport, seed coat, membrane transport model  相似文献   

9.
The ion relations of the halophytc Suaeda maritima are described.When plants grew in 340 mol m–3 sodium chloride (—1•76MPa) leaf solute potentials decreased, and were sustained around—2•5 MPa Inorganic ion concentration (mostly of sodiumchloride) accounted for this. Comparable shoot ion concentrationsof potassium, nitrate and sulphate occurred when plants grewon different salinity types characterized by these ions. Netsodium transport and shoot sodium concentration increased dramaticallywith increases in external sodium chloride concentration upto 85 mol m–3; thereafter, further increases in externalsodium chloride concentration had relatively little effect uponeither shoot sodium concentration or upon net transport of sodiumto the shoot. The net transport of sodium plus potassium onlydoubled when the external concentration of sodium plus potassiumincreased from 24 to 687 mol m–3 Shoot ion concentrationswere remarkably constant with time, external concentration andsalinity type. The membrane flux rates and symplasmic ion concentrations neededto sustain the observed net transport of sodium (of some 10mmol g–1 dry wt. of roots d–1) are calculated fromanatomical and stereological data for the root system of thisspecies. The minimum net sodium chloride flux to load the symplasmwould be 260 nmol m–2s–1 if the whole cortical andepidermal plasmalemmal surface area were used uniformly, butthe flux rate required would be 3000 nmol m–2s–1if uptake took place only at the root surface. A flux rate ofat least 1000 nmol m–2s–1 is needed between symplasmand xylem. The symplasmic concentration of NaCl would be atleast 80 mol m–3. It is argued (1), that both symplasmicand xylem loading are likely to be passive processes mediatedby ion channels rather than active carriers, (2), that net iontransport at 340 mol m–3 sodium chloride is close to themaximum which is physiologically sustainable and (3), that growthof this halophyte is limited by NaCl supply from the root. Key words: Suaeda maritima, halophyte, salinity, roots, radial ion transport  相似文献   

10.
JUNG  K.-D.; BALL  E.; LUTTGE  U. 《Annals of botany》1980,45(3):351-356
The amino acid analog p-fluorophenylalanine (FPA) inhibitedsugar and K+ secretion by nectary glands. FPA specifically reducedthe net excretion of Na+ and Cl by the salt glands ofthe halophyte Limonium vulgare and 36Clexcretion by theglands of the pitcher walls of the carnivorous plant Nepenthes.Net uptake and net accumulation of Na+ and Cl by Limoniumleaf tissue and 36Cl accumulation in Nepenthes pitchertissue were much less inhibited than excretion. The resultsare discussed in relation to literature reporting similar specificeffects of FPA on transport of ions from the symplast of barleyroots into the dead xylem elements. Limonium vulgare, Nepenthes hookeriana, salt-glands, excretion, p-fluorophenylalanine  相似文献   

11.
Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient   总被引:5,自引:0,他引:5  
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat  相似文献   

12.
High pressure liquid chromatography was employed to provide the first definitive proof of the net uptake of dissolved free amino acids (DFFA) at nanomolar levels by four scleractinian corals (Montastrea annularis, Madracis mirabilis, Agaricia fragilìs, and Favia fragum). During 2 h incubations all species exhibited simultaneous net uptake of eight amino acids. For M. annularis and F. fragum uptake of some dissolved amino acids occurred at concentrations lower than those found in reef waters. Microbial activity or adsorption of DFAA to exposed coral skeletons during these experiments did not appear to be important. Although it seems unlikely that DFAA uptake can provide a significant energy source for corals under ambient condìtions, it may be important in the acquisition and retention of nitrogen by these animals.  相似文献   

13.
Techniques have been devised to select immature barley embryosat various stages in their development, and to study their accumulationof sucrose in vitro. Isolated embryos accumulate sucrose overa period of several hours of which some 80 per cent is conservedas a pool of free sucrose and the remainder utilized in macromolecularsynthesis. The rate of sucrose uptake increases with embryodevelopment, however the specific activity of uptake remainsconstant, indicating that the transport processes are fullyoperative early in embryogenesis. From the kinetics of sucroseuptake it is deduced that facilitated transport predominatesat sucrose concentrations of 50 mM, while at higher concentrationspassive diffusion makes an increasing contribution to sucroseaccumulation. The substrate specificity and the sensitivityof sucrose transport to uncoupling agents, in addition to thestability of the pool of accumulated sucrose, are all indicativeof active transport playing a major role in the sucrose assimilationof developing barley embryos. Hordeum distichum (L.) Lam, barley, embryo, sucrose transport  相似文献   

14.
1. Radiolabelled (14C) amino acids were used to investigate the influence of sediment size as well as dissolved free amino acid (DFAA) concentration and composition on immobilization and mineralization of DFAAs by biofilms from a first-order stream. 2. Over time (240 min), biofilms on stony substrata immobilized a DFAA mixture more effectively than those on sandy substrata, however proportional mineralization of immobilized DFAAs was higher for sandy substrata (36 v 20%). 3. Using stony substrata, the DFAA mixture was immobilized more rapidly than glycine alone at ‘near-natural’ amino acid concentrations (c. 37 μgl?1), as well as enriched concentrations (1 and 100 mg 1-?1). Instantaneous rates of glycine immobilization and mineralization were not saturated at glycine enrichments of up to 980 mgl?1. 4. With both the amino acid mixture and glycine alone, proportional mineralization of the immobilized amino acids increased on enrichment to Img 1-?1 (DFAA mixture: from 25 to 37%; glycine alone: from 50 to 54%), but then fell on further enrichment to 100mgl?1 (DFAA mixture: 11%; glycine alone: 7%). 5. Results are discussed in terms of the potential trophic utility of immobilized DFAAs as well as the apparent roles of biotic and abiotic immobilization mechanisms. Immobilization and mineralization responses to variables investigated in this study give an insight into potential variability of carbon immobilization and retention in stream-bed sediments. This is fundamental to an understanding of how DOC may become available to higher trophic levels.  相似文献   

15.
Soybean [Glycine max (L.) Merrill] seeds and cotyledons weregrown in an in vitro culture system to investigate the relationshipsbetween cell expansion (net water uptake by the seed) and drymatter accumulation. Seeds or cotyledons grown in a completenutrient medium containing 200 mol m–3 sucrose continueddry matter accumulation for up to 16 d after in planta seedsreached physiological maturity (maximum seed dry weight). Seedor cotyledon water content increased throughout the cultureperiod and the water concentration remained above 600 g kg–1fresh weight. These data indicate that the cessation of seeddry matter accumulation is controlled by the physiological environmentof the seed and is not a pre-determined seed characteristic.Adding 600 mol m–3 mannitol to the medium caused a decreasein seed water content and concentration. Seeds in this mediumstopped accumulating dry matter at a water concentration ofapproximately 550 g kg–1. The data suggest that dry matteraccumulation by soybean seeds can continue only as long as thereis a net uptake of water to drive cell expansion. In the absenceof a net water uptake, continued dry matter accumulation causesdesiccation which triggers maturation. Key words: Glycine max (L.) Merrill, solution culture, duration of seed growth, water content, dry matter accumulation  相似文献   

16.
The polar transport of indol-3yl-acetic acid (IAA-2-14C) instem explants and decapitated shoots of tumour-prone Nicotianahybrids (2n, 3n, and 4n) was compared with that in the normal,non-tumorous parent species N. glauca and N. langsdorffii. Thetotal uptake of the auxin from donor blocks was greatest inthe hybrids and N. glauca. The velocity of the basipetal movementof IAA-14C was the same in all species tested, i.e. 8 mm/h.The transport capacity for the hormone, however, was decreasedin the three tumour-prone hybrids. Gas chromatography showedthat between 70 and 90 per cent of the transported auxin waspresent in the form of IAA, between 10 and 30 per cent in theform of indol-3yl-aldehyde (IAld). The basipetal transport exceeded the acropetal transport inyoung (third) intemodes of all plants studied, whereas in olderstem segments (tenth intenodes) the reverse was found. The polarity of auxin transport was less well expressed in thetumorous hybrids. Blocking the active transport by pre-treatment of stem cuttingswith 2,4-dinitrophenol (2,4-DNP) caused a drastic reductionin the polar IAA-14C movement; in all plants tested the auxintransport was reduced to the same low level. The accumulation of auxin at the base of cuttings was higherin N. glauca and the 2n hybrid than in N. langsdorffii, i.e.about seven times higher after 1-h and three times higher after12-h transport experiments. The release of 14C from the cuttinginto an agar receiver block, however, was markedly reduced inthe 2n hybrid, whereas in N. glauca the labelled substancesmoved more freely into the receiver blocks. Differences in the capacity for the accumulation and the releaseof IAA-14C in hybrid and N. glauca stem tissues were studiedusing decapitated greenhouse plants wounded by incision abovethe fourth internode. Accumulation of the auxin occurred onlyabove the wound-cut in hybrid plants. This observation is consistentwith the view that tumour formation on hybrid stems occurs atsites of wounding. Our data suggest an elevated auxin levelto be present during tumour initiation at these sites. These results on polar transport and accumulation of IAA-14Cin tumorous Nicotiana plants together with our previous dataon various endogenous auxins suggest that the induction of neoplasticgrowth in tobacco plants is correlated with increased auxinlevels and an accumulation of the hormone at sites of wounding.  相似文献   

17.
The factors determining the pattern of uptake by Lemna minorof 2,2-dichloropropionic acid (DCPA), containing chlorine-36,have been examined. Entry takes place via both the roots andfrond and is largely in the ionic form. Initially, the net ratesare high and are replaced by slower but steady rates. It isconcluded that over the first 30 minutes, net uptake is dependenton the physico-chemical processes since (i) the rate is directlyproportional to the external concentration, (ii) on transferenceto buffer containing non-radioactive DCPA up to 90 per centof the radioactivity is exchangeable, (iii) the temperaturecoefficients for the rates of net influx and efflux range from1.2 to 1.4. During the second phase, the net rates of uptakeare curvilinearly related to concentration, the temperaturequotients are higher and the rates of efflux markedly lowerthan in the first phase. Phenylmercuric nitrate and cupric sulphateat 5x10–6 M halve the net rate of uptake but higher concentrationsare demanded for dinitrophenol, arsenite, aside, and iodoacetate.The depression induced by phenylmercuric nitrate can to somedegree be reversed by the addition of either glutathione orcysteine. For pyruvic acid to halve the rate of uptake of DCPA,it requires more than a three hundredfold greater concentration.It is postulated that in the second phase, uptake is mediatedby metabolic processes involving thiol groups. The ability ofcalcium pantothenate and ß-alanine to reverse theinhibitory effects of DCPA on the growth of L. minor were investigatedin multifactorial experiments. Over a narrow range of concentrations,calcium pantothenate partially offset the inhibitions of growthbut the interactions for ß-alanine were not significant.These results do not support the view that the primary actionof DCPA is to interfere with the biosynthesis of Co-enzyme A.In a comparison of the maximal capacity of different speciesto accumulate DCPA in their roots, up to a six-fold differencewas recorded in the eight species examined. On the basis ofthese findings, the mechanisms determining selective actionand the inhibition of meristematic activity are discussed.  相似文献   

18.
The rates of sulphate transport into intact and excised rootsof soybean (Glycine max L.) were not significantly differentin the first hour and were maximal at pH 7. However, intactroots accumulated four times as much sulphate as excised rootsin 24 h, because of a marked reduction in the rate of transportby excised roots. The continued high rates of transport intointact roots were observed in plants kept in the light, andobserved in darkened plants growing in 1 per cent sucrose. Similarly,sulphate accumulation by excised roots was stimulated 2-foldby 1 per cent sucrose. The characteristics of sulphate accumulation by roots were notuseful in predicting sulphate translocation to the leaves. Transportto the leaves was maximal at pH 2–3, was almost totallylight-dependent and was not enhanced by growing plants in sucrose. Sulphate transport, Glycine max L., soybean, excised roots  相似文献   

19.
The effect of short-term variations in saiinity on photosynthesisand respiration in an estuarine clone of the diatom Nitzschiaamericana was examined using a laboratory environmental simulationsystem. A computer-controlled culturing system simulated surfacelongitudinal salinity gradients in the Cape Fear River Estuary,NC by regulating the growth conditions of a continuous culturein real-time. Salinity changes were programmed based on a one-dimensionalhorizontal advection model of the Cape Fear River Estuary. Thesystem proved useful in evaluating phytoplanklon photosyntheticresponses to changes in its local environment on time scalessimilar to those operating in natural systems. As more sophisticatedmodels of the physical environment and particle transport areincorporated into the simulation program, realistic physiologicalmodels of phytoplankton production can be developed. Averagerates of net carbon fixation measured during the environmentalsimulation were compared to rates predicted by long-term adaptationstudies. These results indicate that rates of net carbon fixationdecline sharply following a rapid (hours) increase in salinity.Rates of net carbon fixation return, however, approximatelyto maximum predicted rates if the salinity environment is constantfor approximately 24 h, suggesting an adaptation period. Presumablythis time is necessary for N. americana to initiate physiologicalmechanisms responsible for osmoregulation and various compensatoryresponses to changes in salinity. These results further indicatethat significant errors may result when production models basedon long-term adaptive responses are used to describe phytoplanktonproductivity in variable environments.  相似文献   

20.
Aquaporins (AQPs) accelerate the movement of water and other solutes across biological membranes, yet the molecular mechanisms of each AQP's transport function and the diverse physiological roles played by AQP family members are still being defined. We therefore have characterized an AQP in a model organism, Drosophila melanogaster, which is amenable to genetic manipulation and developmental analysis. To study the mechanism of Drosophila Malpighian tubule (MT)-facilitated water transport, we identified seven putative AQPs in the Drosophila genome and found that one of these, previously named DRIP, has the greatest sequence similarity to those vertebrate AQPs that exhibit the highest rates of water transport. In situ mRNA analyses showed that DRIP is expressed in both embryonic and adult MTs, as well as in other tissues in which fluid transport is essential. In addition, the pattern of DRIP expression was dynamic. To define DRIP-mediated water transport, the protein was expressed in Xenopus oocytes and in yeast secretory vesicles, and we found that significantly elevated rates of water transport correlated with DRIP expression. Moreover, the activation energy required for water transport in DRIP-expressing secretory vesicles was 4.9 kcal/mol. This low value is characteristic of AQP-mediated water transport, whereas the value in control vesicles was 16.4 kcal/mol. In contrast, glycerol, urea, ammonia, and proton transport were unaffected by DRIP expression, suggesting that DRIP is a highly selective water-specific channel. This result is consistent with the homology between DRIP and mammalian water-specific AQPs. Together, these data establish Drosophila as a new model system with which to investigate AQP function. fluid homeostasis; osmosis; channel; membrane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号