首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When [3H]inositol-prelabeled cultured bovine adrenal chromaffin cells were stimulated with high K+ (56 mM) and nicotine (10 microM), a large and transient increase in [3H]inositol 1,3,4,5,6-pentakisphosphate (InsP5) accumulation was observed. The accumulation reached the maximum level at 15 s and then declined to the basal level at 2 min. The time course of accumulation of InsP5 was parallel to that of [3H]inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Angiotensin II (Ang II) (10 microM) rapidly accumulated InsP5, but the level was sustained for 2 min. With a slower time course and a lesser amount than InsP5, high K+, nicotine, and Ang II caused an accumulation of [3H]inositol 1,3,4,5-tetrakisphosphate and [3H]inositol hexakisphosphate. Veratridine (100 microM), maitotoxin (10 ng/ml), ATP (30 microM), platelet-derived growth factor (10 ng/ml), and endothelin (10 ng/ml) also induced the InsP5 accumulation. High K+, nicotine, veratridine, and maitotoxin induced an increase in 45Ca2+ uptake, whereas Ang II, ATP, platelet-derived growth factor, and endothelin did not cause 45Ca2+ uptake. Nifedipine, a calcium channel antagonist, inhibited the high K(+)-induced InsP5 accumulation but failed to affect the Ang II-induced InsP5 accumulation. In an EGTA-containing and Ca2(+)-depleted medium, the high K(+)-induced InsP5 accumulation was completely inhibited, whereas the InsP5 accumulation induced by Ang II was not significantly inhibited. 12-O-tetradecanoylphorbol-13-acetate inhibited partially the Ang II-induced InsP5 accumulation but failed to inhibit the high K(+)-induced accumulation. In those experiments, the changes of InsP5 accumulation were closely correlated to those of Ins(1,4,5)P3. In the chromaffin cell homogenate, [3H] Ins(1,4,5)P3 was converted eventually to [3H]InsP5 through [3H]inositol 1,3,4,6-tetrakisphosphate. Taken together, the above results suggest that InsP5 is rapidly formed by a variety of stimulants and that the formation of InsP5 may occur through two mechanisms, i.e. Ca2+ uptake-dependent and Ca2+ uptake-independent ones in cultured adrenal chromaffin cells.  相似文献   

2.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

3.
In adrenal glomerulosa cells, angiotensin II stimulates rapid increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), followed by slower increases in two additional inositol tetrakisphosphate (InsP4) isomers. One of these InsP4 isomers was previously identified as Ins-1,3,4,6-P4 and shown to be a precursor of inositol pentakisphosphate (InsP5). Analysis of the third InsP4 isomer, purified from cultured bovine adrenal cells labeled with [3H]inositol and stimulated by angiotensin II, revealed that the polyol produced by periodate oxidation, borohydrate reduction, and dephosphorylation was [3H]iditol. This finding is consistent with precursor structures of either Ins-1,4,5,6-P4 or Ins-3,4,5,6-P4 (= L-Ins-1,4,5,6-P4) for the third InsP4 isomer. The [3H]iditol was readily converted to [3H]sorbose by the stereospecific enzyme, L-iditol dehydrogenase, indicating that it originated from Ins-3,4,5,6-P4. Chicken erythrocytes labeled with [3H]inositol also contained high levels of Ins-1,3,4,6-P4 and Ins-3,4,5,6-P4, as well as InsP5, but only small amounts of Ins-1,3,4,5-P4. Both [3H]Ins-1,3,4,6-P4 and [3H]Ins-3,4,5,6-P4, but not [3H]Ins-1,3,4,5-P4, were phosphorylated to form InsP5 in permeabilized bovine glomerulosa cells. In addition, InsP5 itself was slowly dephosphorylated to Ins-1,4,5,6-P4, indicating that its structure is Ins-1,3,4,5,6-P5. These results demonstrate that the higher inositol phosphates are metabolically interrelated and are linked to the receptor-regulated InsP3 response by the conversion of Ins-1,3,4-P3 through Ins-1,3,4,6-P4 to Ins-1,3,4,5,6-P5. The source of Ins-3,4,5,6-P4, the other precursor of InsP5, is not yet known but its elevation in angiotensin II-stimulated glomerulosa cells suggests that its formation is also influenced by agonist-regulated processes.  相似文献   

4.
The formation and metabolism of inositol pentakis-and hexakisphosphates (InsP5 and InsP6) were investigated in Xenopus laevis oocytes. After [3H]inositol injection, [3H]InsP5 and subsequently [3H]Insp6 increased progressively over 72 h. In intact oocytes, [3H]InsP5 was progressively converted to [3H]InsP6 from 6 to 72 h of incubation and was not metabolized to lower inositol phosphates. In contrast, [3H]InsP6 remained unmetabolized for up to 72 h. These data are consistent with the kinetics of the increases in [3H]InsP5 and [3H]InsP6 in [3H]inositol-labeled oocytes. The highly phosphorylated inositols showed significant changes during oogenesis and maturation. In oocytes incubated for 48 h after [3H]inositol injection, the radioactive incorporation into polyphosphoinositols increased progressively from stage 3 to stage 6, with 5- and 6-fold rises (cpm/mg protein) for [3H]InsP5 and [3H]InsP6, respectively. These developmental changes were associated with 5-fold increases in [3H]inositol tetrakisphosphate between stages 3 and 6 of oogenesis. Induction of oocyte maturation by progesterone (1 microM) during the last 12 of a 36-h incubation with [3H]inositol doubled the levels of [3H]InsP6 relative to [3H]InsP5, suggesting that the activity of inositol pentakisphosphate kinase increases during maturation. These results provide direct evidence for metabolic conversion of InsP5 to InsP6 in animal cells and show that the higher inositol polyphosphates, unlike the lower phosphoinositols, are extraordinarily stable. These species increase markedly during ovum development and may play a regulatory role in oogenesis and maturation.  相似文献   

5.
[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.  相似文献   

6.
Angiotensin II stimulates rapid formation of inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) in bovine adrenal glomerulosa cells. In addition to being rapidly metabolized to lower inositol phosphates, Ins-1,4,5-P3 is converted to Ins-1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) and Ins-1,3,4-P3 which is in turn phosphorylated to a further Ins-P4 isomer, namely Ins-1,3,4,6-P4. In bovine adrenocortical cytosol [3H]Ins-1,3,4,5-P4 and [3H]Ins-1,3,4-P3 were converted to Ins-1,3,4,6-P4 and inositol pentakisphosphate (Ins-P5) in a metabolic sequence suggesting that unlike Ins-1,3,4,5-P4, Ins-1,3,4,6-P4 is a direct precursor of Ins-P5. Consistent with this assumption, [3H]Ins-1,3,4,6-P4 was converted to Ins-P5 in electropermeabilized adrenal glomerulosa cells. These findings demonstrate that Ins-1,3,4,6-P4 is an intermediate link between InsP3 metabolism and the higher inositol phosphates detected in several tissues.  相似文献   

7.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

8.
NIH 3T3 fibroblasts were stably transfected with rat brain inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase to explore the relationship between increased production of Ins(1,3,4,5)P4 and the formation of InsP5 and InsP6. Mass measurements of InsP5 and InsP6 revealed no significant difference between kinase- and vector-transfected fibroblasts. However, such 3-kinase-transfected cells, when labeled with [3H]inositol for 48-72 h, showed lower levels of [3H]InsP5 and [3H]InsP6, as well as [3H]Ins(1,3,4,6)P4 and D/L[3H]Ins(1,4,5,6)P4, than their vector-transfected counterparts. Because Ins(1,4,5)P3 3-kinase-transfected cells grew less rapidly than vector-transfected controls, we determined whether the synthesis of InsP5 and InsP6 was related to a specific phase of the cell cycle. When NIH 3T3 cells prelabeled with [3H]inositol were synchronized by serum deprivation followed by stimulation with platelet-derived growth factor (PDGF), the amounts of labeled InsP5 and InsP6 began to increase only after 12 h of stimulation, when cells entered the S-phase as indicated by increased [3H]thymidine incorporation. The enhanced synthesis of these inositol polyphosphates was preceded by an early increase in Ins(1,4,5)P3 and its metabolites that was no longer evident by the fifth hour of PDGF action. There was also a prominent and biphasic increase in the level of D/L-Ins(1,4,5,6)P4 with an early peak at approximately 3 h and a second rise that paralleled the increases in InsP5 and InsP6. These results indicate that the formation of highly phosphorylated inositols is not tightly coupled to the receptor-mediated formation of Ins(1,4,5)P3 and its metabolites but is mainly determined by other factors that operate at specific points of the cell cycle.  相似文献   

9.
The effects of Li+ on carbachol-stimulated phosphoinositide metabolism were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. The muscarinic agonist carbachol evoked an enhanced steady-state accumulation of [3H]inositol monophosphate ([3H]InsP1), [3H]inositol bisphosphate ([3H]InsP2), [3H]inositol 1,3,4-trisphosphate ([3H]Ins(1,3,4)P3), [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and [3H]inositol tetrakisphosphate ([3H]InsP4). Li+ (5 mM), after a 10 min lag, severely attenuated carbachol-stimulated [3H]InsP4 accumulation while simultaneously potentiating accumulation of both [3H]InsP1 and [3H]InsP2 and, at least initially, of [3H]Ins(1,3,4)P3. These data are consistent with inhibition of inositol mono-, bis- and 1,3,4-tris-phosphate phosphatases to different degrees by Li+ in brain, but are not considered to be completely accounted for in this way. Potential direct and indirect mechanisms of the inhibitory action of Li+ on [3H]InsP4 accumulation are considered. The present results stress the complex action of Li+ on cerebral inositol metabolism and indicate that more complex mechanisms than are yet evident may regulate this process.  相似文献   

10.
Inositol hexakisphosphate (InsP6) increased 45Ca2+ uptake in cultured cerebellar granule cells. This increase was concentration dependent (EC50 = 20 microM), exhibited slow kinetics, and was present after 5 days of cell maturation in culture. InsP6 also enhanced D-[3H]aspartate release in cerebellar granule cells at 11-12 days in vitro. Stimulation of 45Ca2+ uptake was also produced by inositol pentakisphosphate but not by inositol 1,3,4,5-tetrakisphosphate. The increase in 45Ca2+ influx induced by InsP6 was independent of extracellular Na+ and was only partially reduced by the organic calcium channel blocker nifedipine. The intrinsic action of InsP6 was not affected by competitive or noncompetitive glutamate receptor antagonists. In addition, stimulations of 45Ca2+ uptake by InsP6 and glutamate were additive. These data provide evidence that InsP6 directly activates a specific population of neurons in the CNS.  相似文献   

11.
Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] of turkey erythrocytes were labelled by using either [32P]Pi or [3H]inositol. Although there was little basal release of inositol phosphates from membranes purified from labelled cells, in the presence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) the rate of accumulation of inositol bis-, tris- and tetrakis-phosphate (InsP2, InsP3 and InsP4) was increased 20-50-fold. The enhanced rate of accumulation of 3H-labelled inositol phosphates was linear for up to 20 min; owing to decreases in 32P specific radioactivity of phosphoinositides during incubation of membranes with unlabelled ATP, the accumulation of 32P-labelled inositol phosphates was linear for only 5 min. In the absence of ATP and a nucleotide-regenerating system, no InsP4 was formed, and the overall inositol phosphate response to GTP[S] was decreased. Analyses of phosphoinositides during incubation with ATP indicated that interconversions of PtdIns to PtdIns4P and PtdIns4P to PtdIns(4,5)P2 occurred to maintain PtdIns(4,5)P2 concentrations; GTP[S]-induced inositol phosphate formation was accompanied by a corresponding decrease in 32P- and 3H-labelled PtdIns, PtdIns4P and PtdIns(4,5)P2. In the absence of ATP, only GTP[S]-induced decreases in PtdIns(4,5)P2 occurred. Since inositol monophosphate was not formed under any condition, PtdIns is not a substrate for the phospholipase C. The production of InsP2 was decreased markedly, but not blocked, under conditions where Ins(1,4,5)P3 5-phosphomonoesterase activity in the preparation was inhibited. Thus the predominant substrate of the GTP[S]-activated phospholipase C of turkey erythrocyte membranes is PtdIns(4,5)P2. Ins(1,4,5)P3 was the major product of this reaction; only a small amount of Ins(1:2-cyclic, 4,5)P3 was released. The effects of ATP on inositol phosphate formation apparently involve the contributions of two phenomena. First, the P2-receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) greatly increased inositol phosphate formation and decreased [3H]PtdIns4P and [3H]PtdIns(4,5)P2 in the presence of a low (0.1 microM) concentration of GTP[S]. ATP over the concentration range 0-100 microM produced effects in the presence of 0.1 microM-GTP[S] essentially identical with those observed with 2MeSATP, suggesting that the effects of low concentrations of ATP are also explained by a stimulation of P2-receptors. Higher concentrations of ATP also increase inositol phosphate formation, apparently by supporting the synthesis of substrate phospholipids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In pancreatic acinar cells prelabeled with either 32Pi or myo-[3H]inositol, arachidonic acid (10-50 microM) rapidly decreased the steady-state levels of [32P]phosphatidylinositol 4',5'-bisphosphate [( 32P]PtdIns4,5P2) and inhibited carbachol-stimulated accumulation of [3H]inositol trisphosphate [( 3H]InsP3). Both actions of arachidonic acid were rapidly reversed by bovine serum albumin (BSA). Indomethacin and nordihydoguaiaretic acid failed to block the inhibitory effects of arachidonic acid on [32P]PtdIns4,5P2 levels. Arachidonic acid (10-50 microM) also caused a prompt depletion of cellular ATP which was rapidly reversed by BSA. The ATP-depleting action of arachidonate paralleled in terms of concentration dependence and time course its inhibitory effects on [32P]PtdIns4,5P2 and [3H]InsP3 levels. Exposure of acinar cells to 50 microM arachidonic acid produced an increase in oxygen consumption which exceeded that elicited by either carbachol or ionomycin. Arachidonic acid (10-50 microM) also caused a concentration-dependent rise in cytosolic Ca2+, which was partially obtunded by Ca2+ deprivation. A proposed mechanism involving arachidonic acid as a negative feedback regulator of polyphosphoinositide turnover in exocrine pancreas is discussed.  相似文献   

14.
Stimulation with high K+ (KCl, 56 mM) of myo-[3H]inositol-prelabelled cells increased Ca2+ uptake and [3H]inositol trisphosphate (IP3) accumulation in a concentration-dependent manner. Nifedipine, a Ca2+ channel antagonist, inhibited high K+-induced [3H]IP3 accumulation and 45Ca2+ uptake with a similar potency. Furthermore, ionomycin (1 microM), a Ca2+ ionophore, also induced 45Ca2+ uptake and [3H]IP3 accumulation. These results indicate the existence of the Ca2+ uptake-triggered mechanism of IP3 formation in cultured adrenal chromaffin cells.  相似文献   

15.
Stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by a phospholipase C to produce inositol trisphosphate (InsP3) and 1,2-diacylglycerol appears to be the initial step in signal transduction for a number of cell-surface interacting stimuli, including thyrotropin-releasing hormone (TRH). In suspensions of membranes isolated from rat pituitary (GH3) cells that were prelabeled to isotopic steady state with [3H]inositol and incubated with ATP, [3H] PtdIns(4,5)P2, and [3H]phosphatidylinositol 4-phosphate, the polyphosphoinositides, and [3H]InsP3 and [3H]inositol bisphosphate, the inositol polyphosphates, accumulated. TRH and GTP stimulated the accumulation of [3H]inositol polyphosphates in time- and concentration-dependent manners; half-maximal effects occurred with 10-30 nM TRH and with 3 microM GTP. A nonhydrolyzable analog of GTP also stimulated [3H] inositol polyphosphate accumulation. Moreover, when TRH and GTP were added together their effects were more than additive. Fixing the free Ca2+ concentration in the incubation buffer at 20 nM, a value below that present in the cytoplasm in vivo did not inhibit stimulation by TRH and GTP of [3H]inositol polyphosphate accumulation. ATP was necessary for basal and stimulated accumulation of [3H]inositol polyphosphates, and a nonhydrolyzable analog of ATP could not substitute for ATP. These data demonstrate that TRH and GTP act synergistically to stimulate the accumulation of InsP3 in suspensions of pituitary membranes and that ATP, most likely acting as substrate for polyphosphoinositide synthesis, was necessary for this effect. These findings suggest that a guanine nucleotide-binding regulatory protein is involved in coupling the TRH receptor to a phospholipase C that hydrolyzes PtdIns(4,5)P2.  相似文献   

16.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

17.
Basal and stimulated levels of inositol phosphates were determined in the protozoan Paramecium labelled with myo-[3H]inositol. Under resting conditions, intracellular InsP6 (phytic acid), InsP5 and InsP4 concentrations were 140, 10 and 2 microM, respectively. InsP5 was comprised of 56% Ins(1,2,3,4,5)P5 and/or Ins(1,2,3,5,6)P5, 40% Ins(1,2,4,5,6)P5 and/or Ins(2,3,4,5,6)P5 and small amounts of Ins(1,3,4,5,6)P5 and Ins(1,2,3,4,6)P5. InsP4 was mainly Ins(1, 4, 5, 6)P4 and/or Ins(3, 4, 5, 6)P4. Other inositol phosphates were not detected at a detection limit of 50-85 nM. Using various depolarizing and hyperpolarizing stimuli, no significant changes in level of inositol phosphates were observed in vivo, indicating that in the ciliate a contribution of inositol phosphates to signal-transduction mechanisms is unlikely. In homogenates prepared from myo-[3H]inositol-labelled cells, a marked relative increase in InsP3 and InsP4 over the concentrations in vivo was observed. These inositol phosphates were identified as degradation products of endogenous InsP6. A novel separation methodology for inositol phosphates was established to allow unequivocal assignment of phosphate locations of all dephosphorylated InsP6-derived products. The dephosphorylation was catalyzed by a phytase-like enzyme with a molecular mass of 240 kDa, most likely of a hexameric structure. The enzyme had a pH optimum of 7.0 and did not require divalent cations for activity. Substrate concentrations above 300 microM were inhibitory. Dephosphorylation of InsP6 by the Paramecium enzyme differs from that of phytases from plants in that it proceeds via a sequential release of phosphate groups from positions 6, 5, 4 and 3 of the myo-inositol ring or/and positions 4, 5, 6 and 1.  相似文献   

18.
Inositol trisphosphate (IP3), a product of the phosphoinositide cycle, mobilizes intracellular Ca2+ in many cell types. New evidence suggests that inositol tetrakisphosphate (IP4), an IP3 derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP4 are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP4 in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine (0.4 mM) stimulated an increase in [3H]IP4 and [3H]IP3 accumulation in chromaffin cells and this effect was completely blocked by atropine (0.5 mM). [3H]IP4 accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP3 and IP4 hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP4 and calcium homeostasis.  相似文献   

19.
1. A screen for agonists capable of stimulating the formation of inositol phosphates in erythrocytes from 5-day-old chickens revealed the presence of a population of phosphoinositidase C-linked purinergic receptors. 2. If chicken erythrocytes prelabelled with [3H]Ins were exposed to a maximal effective dose of adenosine 5'-[beta-thio]diphosphate for 30 s, the agonist-stimulated increment in total [3H]inositol phosphates was confined to [3H]Ins(1,4,5)P3, Ins(1,3,4,5)P4 and InsP2. After 40 min stimulation, the radiolabelling of nearly all of the [3H]inositol phosphates that have been detected in these extracts [Stephens, Hawkins & Downes (1989) Biochem. J. 262, 727-737] had risen. However, some of these increases [especially those in Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5] were accountable for almost entirely by increases in specific radioactivity rather than in mass. 3. The effect of purinergic stimulation on the rate of incorporation of [32P]Pi in the medium into the gamma-phosphate group of ATP and InsP4 and InsP5 was also measured. After 40 min stimulation, the incorporation of 32P into Ins(1,3,4,6)P4, Ins(1,3,4,5)P4, Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5 was significantly elevated, whereas the mass of the last two and the specific radioactivity of the gamma-phosphate of ATP were unchanged compared with control erythrocyte suspensions. 4. In control suspensions of avian erythrocytes, the specific radioactivity of the individual phosphate moieties of Ins(1,3,4,6)P4 increased through the series 1, 6, 4 and 3 [Stephens & Downes (1990) Biochem. J. 265, 435-452]. This pattern of 32P incorporation is not the anticipated outcome of 6-hydroxy phosphorylation of Ins(1,3,4)P3 [the assumed route of synthesis of Ins(1,3,4,6)P4]. Although adenosine [beta-thio]diphosphate significantly stimulated the accumulation of [3H]Ins(1,3,4)P3, and despite the fact that avian erythrocyte lysates were shown to possess a chromatographically distinct, soluble, ATP-dependent, Ins(1,3,4)P3 6-hydroxykinase activity, purinergic stimulation of intact cells did not significantly alter the pattern of incorporation of [32P]Pi into the individual phosphate moieties of Ins(1,3,4,6)P4. These results suggest that the route of synthesis of this inositol phosphate species is not changed during the presence of an agonist.  相似文献   

20.
Incubation of human platelets with myo-[3H]inositol in a low-glucose Tyrode's solution containing MnCl2 enhanced the labelling of phosphoinositides about sevenfold and greatly facilitated the measurement of [3H]inositol phosphates formed by the activation of phospholipase C. Labelled platelets were permeabilized by high-voltage electric discharges and equilibrated at 0 degree C with ATP, Ca2+ buffers and guanine nucleotides, before incubation in the absence or presence of thrombin. Incubation of these platelets with ATP in the presence or absence of Ca2+ ions led to the conversion of [3H]phosphatidylinositol to [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PtdInsP2). At a pCa of 6, addition of 100 microM GTP[gamma S] both prevented this accumulation of [3H]PtdInsP2 and stimulated its breakdown; the formation of [3H]inositol phosphates was increased ninefold. After 5 min these comprised 70% [3H]inositol monophosphate ([3H]InsP), 28% [3H]inositol bisphosphate ([3H]InsP2) and 2% [3H]inositol trisphosphate ([3H]InsP3). In shorter incubations higher percentages of [3H]InsP2 and [3H]InsP3 were found. In the absence of added Ca2+, the formation of [3H]inositol phosphates was decreased by over 90%. Incubation of permeabilized platelets with GTP[gamma S] in the presence of 10 mM Li+ decreased the accumulation of [3H]InsP and increased that of [3H]InsP2, without affecting [3H]InsP3 levels. Addition of unlabelled InsP3 decreased the intracellular hydrolysis of exogenous [32P]InsP3 but did not trap additional [3H]InsP3. These results and the time course of [3H]inositol phosphate formation suggest that GTP[gamma S] stimulated the action of phospholipase C on a pool of [3H]phosphatidylinositol 4-phosphate that was otherwise converted to [3H]PtdInsP2 and that much less hydrolysis of [3H]phosphatidylinositol to [3H]InsP or of [3H]PtdInsP2 to [3H]InsP3 occurred. At a pCa of 6, addition of thrombin (2 units/ml) to permeabilized platelets caused small increases in the formation of [3H]InsP and [3H]InsP2. This action of thrombin was enhanced twofold by 10-100 microM GTP and much more potently by 4-40 microM GTP[gamma S]. In the presence of the latter, thrombin also increased [3H]InsP3. The total formation of [3H]inositol phosphates by permeabilized platelets incubated with thrombin and GTP[gamma S] was comparable with that observed on addition of thrombin alone to intact platelets. However, HPLC of the [3H]inositol phosphates formed indicated that about 75% of the [3H]InsP accumulating in permeabilized platelets was the 4-phosphate, whereas in intact platelets stimulated by thrombin, up to 80% was the 1-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号