首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Because cytoskeletal actin is regulated, in part, by Rho, and because Rho and caspases are involved in apoptosis, we sought to determine whether there was an association between RhoB and caspase-2. A RhoB-caspase-2 association was consistently demonstrated in neonatal mouse cardiomyocytes with Western Blotting, either after immunoprecipitation with RhoB followed by immunoblotting with caspase-2, or in reciprocal experiments after immuno precipitation with caspase-2 and immunoblotting with RhoB (n = 14). Although the RhoB-caspase-2 complex was constitutively present, the link between RhoB and caspase-2 may be operative in apoptosis because the HMG-CoA reductase inhibitor lovastatin increased the RhoB-caspase complex, especially in the nuclear fraction of the cell, with a peak occurrence 2 h after treatment. This association was unaffected by the caspase-2 inhibitor zVDVAD. Lovastatin produced apoptosis that was accompanied by an activation of caspase-2, as demonstrated by its immunohistochemistry and by the fact that the caspase-2 inhibitor zVDVAD reduced lovastatin-induced apoptosis. Lovastatin induced dramatic changes in cell morphology and a reduction in F-actin. Immunoblotting for actin suggests that lovastatin does not induce a degradation of the actin molecule, but rather affects filamentous F-actin. Caspase-2 inhibition with zVDVAD reduced lovastatin-induced alteration in cytoskeletal F-actin. The Rho inhibitor, Clostridium difficile toxin B, blunted the ability of lovastatin to induce apoptosis. In summary, these data show a previously unrecognized association between RhoB and caspase-2 in the cytosolic and nuclear fractions, which has ramifications for processes regulated by RhoB and caspase-2, including apoptosis.  相似文献   

2.
Blockade of mevalonate synthesis by the 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitor mevinolin (lovastatin) causes FRTL-5 thyroid cells to undergo significant morphological changes; these include a transition from a flat, polygonal to a round shape, the development of cytoplasmic arborizations, and the loss of contact between neighboring cells. Immunofluorescence studies of cytoskeletal structures show that, at early times after administering the drug, and before the round phenotype develops, stress fibers disassemble while the peripheral actin filaments, which are adjacent to the cytoplasmic face of the plasma membrane, appear largely unaffected. Subsequently, when this cortical actin network becomes fragmented, cells start to round up and become separated from neighbors. Microtubules become disconnected from the plasma membrane and retract toward the cell center, although they do not appear depolymerized; indeed, at this stage, cytoplasmic elongations contain mostly intact microtubules. After exposure to mevinolin FRTL-5 cells also lose vinculin-related substrate contacts. Treatment of cells with either cycloheximide or colchicine abolishes morphological changes induced by mevinolin, suggesting that ongoing protein synthesis and microtubule integrity are prerequisites for the drug to be effective. Both cytoskeletal and morphological perturbations can be reversed by mevalonate, but not by cholesterol or the non-sterol derivatives of mevalonate such as dolichol, ubiquinone, and isopentenyladenine, individually or in combination. It is suggested that mevalonate deficiency may impair formation of isoprenylated proteins important for cytoskeletal organization and stability. © 1993 Wiley-Liss, Inc.  相似文献   

3.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

4.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

5.
Cell therapy with bone marrow-derived mesenchymal stem cells (MSCs) has been shown to have great promises in cardiac repair after myocardial infarction. However, poor viability of transplanted MSCs in the infracted heart has limited the therapeutic efficacy. Our previous studies have shown in vitro that rat MSCs undergo caspase-dependent apoptosis in response to hypoxia and serum deprivation (Hypoxia/SD). Recent findings have implicated statins, an established class of cholesterol-lowering drugs, enhance the survival of cells under various conditions. In this study, we investigated the effect of lovastatin on rat MSCs apoptosis induced by Hypoxia/SD, focusing in particular on regulation of mitochondrial apoptotic pathway and the survival signaling pathways. We demonstrated that lovastatin (0.01-1 microM) remarkably prevented MSCs from Hypoxia/SD-induced apoptosis through inhibition of the mitochondrial apoptotic pathway, leading to attenuation of caspase-3 activation. The loss of mitochondrial membrane potential and cytochrome-c release from mitochondria to cytosol were significantly inhibited by lovastatin. Furthermore, the antiapoptotic effect of lovastatin on mitochondrial apoptotic pathway was effectively abrogated by both PI3K inhibitor, LY294002 and ERK1/2 inhibitor, U0126. The phosphorylations of Akt/GSK3 beta and ERK1/2 stimulated by lovastatin were detected. The activation of ERK1/2 was inhibited by a PI3K inhibitor, LY294002, but U0126, a ERK1/2 inhibitor did not inhibit phosphorylation of Akt and GSK3 beta. These data demonstrate that lovastatin protects MSCs from Hypoxia/SD-induced apoptosis via PI3K/Akt and MEK/ERK1/2 pathways, suggesting that it may prove a useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.  相似文献   

6.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

7.
Apoptosis was induced in embryonic chick cardiomyocytes by staurosporine. Treatment of cardiomyocytes with the preferential caspase-2 inhibitor, z-VDVAD-fmk (100 microM), produced a significant (P < 0.05) although small reduction in the amount of cell death. Ac-DVED-cmk (100 microM), which preferentially inhibits caspase-3 but inhibits to a lesser extent caspase-6, -7, -8, and -10, produced a minimal decrease in cell death. The combination of the caspase-3 and -2 inhibitors produced an additive reduction in cell death after staurosporine (1 microM for 6 h) from 80.4 +/- 0.7 to 54.6 +/- 1.3%. The ability of staurosporine to activate caspase-3 was confirmed in these cardiomyocytes by measurement of caspase-3 activity. A role for ceramide formation, from sphingomyelin to induce caspase activation was unlikely, as there were no changes in cellular ceramide or sphingomyelin after staurosporine treatment of cardiomyocytes when sphingomyelin was labeled by [(3)H]palmitate for 24 h. Neither were there any changes in sphingomyelinase activity. While staurosporine effectively suppressed PKC activity, phorbol 12-myristate 13 acetate did not alter staurosporine-induced cell death or DNA fragmentation. These results demonstrate that, in this model of cardiac cell death, caspase-2 inhibition is of considerable importance, caspase-3 inhibition is of lesser significance but may produce additional effects in the combination with caspase-2 inhibition, and ceramide production from sphingomyelin is not operative in the pathway leading to caspase activation and cell death.  相似文献   

8.
Caspase-3 mediated neuronal death after traumatic brain injury in rats   总被引:34,自引:0,他引:34  
During programmed cell death, activation of caspase-3 leads to proteolysis of DNA repair proteins, cytoskeletal proteins, and the inhibitor of caspase-activated deoxyribonuclease, culminating in morphologic changes and DNA damage defining apoptosis. The participation of caspase-3 activation in the evolution of neuronal death after traumatic brain injury in rats was examined. Cleavage of pro-caspase-3 in cytosolic cellular fractions and an increase in caspase-3-like enzyme activity were seen in injured brain versus control. Cleavage of the caspase-3 substrates DNA-dependent protein kinase and inhibitor of caspase-activated deoxyribonuclease and co-localization of cytosolic caspase-3 in neurons with evidence of DNA fragmentation were also identified. Intracerebral administration of the caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (480 ng) after trauma reduced caspase-3-like activity and DNA fragmentation in injured brain versus vehicle at 24 h. Treatment with N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone for 72 h (480 ng/day) reduced contusion size and ipsilateral dorsal hippocampal tissue loss at 3 weeks but had no effect on functional outcome versus vehicle. These data demonstrate that caspase-3 activation contributes to brain tissue loss and downstream biochemical events that execute programmed cell death after traumatic brain injury. Caspase inhibition may prove efficacious in the treatment of certain types of brain injury where programmed cell death occurs.  相似文献   

9.
Cell culture work suggests that signaling to polymerize cortical filamentous actin (F-actin) represents a required pathway for the optimal redistribution of the insulin-responsive glucose transporter, GLUT4, to the plasma membrane. Recent in vitro study further suggests that the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) mediates the effect of insulin on the actin filament network. Here we tested whether similar cytoskeletal mechanics are essential for insulin-regulated glucose transport in isolated rat epitrochlearis skeletal muscle. Microscopic analysis revealed that cortical F-actin is markedly diminished in muscle exposed to latrunculin B. Depolymerization of cortical F-actin with latrunculin B caused a time- and concentration-dependent decline in 2-deoxyglucose transport. The loss of cortical F-actin and glucose transport was paralleled by a decline in insulin-stimulated GLUT4 translocation, as assessed by photolabeling of cell surface GLUT4 with Bio-LC-ATB-BMPA. Although latrunculin B impaired insulin-stimulated GLUT4 translocation and glucose transport, activation of phosphatidylinositol 3-kinase and Akt by insulin was not rendered ineffective. In contrast, the ability of insulin to elicit the cortical F-actin localization of N-WASP was abrogated. These data provide the first evidence that actin cytoskeletal mechanics are an essential feature of the glucose transport process in intact skeletal muscle. Furthermore, these findings support a distal actin-based role for N-WASP in insulin action in vivo.  相似文献   

10.
Analysis of aclarubicin-induced cell death in human fibroblasts   总被引:1,自引:0,他引:1  
In the present study we investigated the mode of cell death induced by aclarubicin (ACL) in trisomic (BB) and normal (S-2) human fibroblasts. Cells were incubated with ACL for 2h and then cultured in drug-free medium for up to 96h. Using fluorescence microscopy, agarose gel electrophoresis and comet assay we demonstrate that ACL induced time-dependent morphological and biochemical changes in both cell types. The population of apoptotic cells, analysed by acridine orange and ethidium bromide nuclear staining reached its maximum at 24-48h. Prolonged post-treatment time progressively increased the level of necrotic cells. At 24-48h time points we also observed a significant increase in caspase-3 activity, oligonucleosomal DNA fragmentation and DNA strand breaks. Cotreatment of cells with the specific caspase-3 inhibitor Ac-DEVD-CHO partly reduced the extent of apoptosis and necrosis and DNA degradation. In conclusion, trisomic and normal fibroblasts demonstrate similar response to aclarubicin treatment. Drug induced the apoptotic and necrotic pathway of cell death that was mediated by caspase-3.  相似文献   

11.
We have previously shown that lovastatin induces apoptosis in spontaneously immortalized rat brain neuroblasts. Focal adhesion proteins and protein kinase Cdelta (PKCdelta) have been implicated in the regulation of apoptosis. We found that lovastatin exposure induced focal adhesion kinase, Crk-associated substrate (p130(Cas)), PKCdelta cleavage and caspase-3 activation in a concentration-dependent manner. Lovastatin effects were fully prevented by mevalonate. The cleavage of p130(Cas) was almost completely inhibited by z-DEVD-fmk, a specific caspase-3 inhibitor, and z-VAD-fmk, a broad spectrum caspase inhibitor, indicating that cleavage is mediated by caspase-3. In contrast, the lovastatin-induced cleavage of PKCdelta was only blocked by z-VAD-fmk suggesting that PKCdelta cleavage is caspase-dependent but caspase-3-independent. Additionally, z-VAD-fmk partially prevented lovastatin-induced neuroblast apoptosis. The present data show that lovastatin may induce neuroblast apoptosis by both caspase-dependent and independent pathways. These findings may suggest that the caspase-dependent component leading to the neuroblast cell death is likely to involve the cleavage of focal adhesion proteins and PKCdelta, which may be partially responsible for some biochemical features of neuroblast apoptosis induced by lovastatin.  相似文献   

12.
A microbial secondary metabolite, arisostatins A (As-A), was originally discovered as a substance carrying the antibiotic activity against Gram-positive bacteria and shown to possess potent anti-tumor properties. The mechanism by which arisostatins A initiates apoptosis remains poorly understood. In the present report we investigated the effect of arisostatins A on activation of the apoptotic pathway in HN-4 cells. Arisostatins A was shown to be responsible for the inhibition of HN-4 cell growth by inducing apoptosis. Treatment with 4 microM arisostatins A for 24h produced morphological features of apoptosis and DNA fragmentation in HN-4 cells. Arisostatins A caused dose-dependent apoptosis and DNA fragmentation of HN-4 cells used as a model. Treatment with caspase inhibitor significantly reduced the arisostatins A-induced caspase 3 activation. In addition, arisostatins A-induced apoptosis was associated with the generation of reactive oxygen species (ROS), which was prevented by an antioxidant NAC (N-acetyl-cysteine). These data indicate that cytotoxic effect of arisostatins A on HN-4 cells is attributable to the induced apoptosis and that arisostatins A-induced apoptosis is mediated by caspase-3 activation pathway, loss of mitochondrial transmembrane potential (DeltaPsi(m)), and release of cytochrome c into cytosol.  相似文献   

13.
To test the role of caspase 3 in apoptosis and in overall cell lethality caused by the protein kinase inhibitor staurosporine, we compared the responses of MCF-7c3 cells that express a stably transfected CASP-3 gene to parental MCF-7:WS8 cells transfected with vector alone and lacking procaspase-3 (MCF-7v). Cells were exposed to increasing doses (0.15-1 microM) of staurosporine for periods up to 19 h. Apoptosis was efficiently induced in MCF-7c3 cells, as demonstrated by cytochrome c release, processing of procaspase-3, procaspase-8, and Bid, increase in caspase-3-like DEVDase activity, cleavage of the enzyme poly(ADP-ribose) polymerase, DNA fragmentation, changes in nuclear morphology, and TUNEL assay and flow cytometry. For all of these measures except cytochrome c release, little or no activity was detected in MCF-7v cells, confirming that caspase-3 is essential for efficient induction of apoptosis by staurosporine, but not for mitochondrial steps that occur earlier in the pathway. MCF-7c3 cells were more sensitive to staurosporine than MCF-7v cells when assayed for loss of viability by reduction of a tetrazolium dye. However, the two cell lines were equally sensitive to killing by staurosporine when evaluated by a clonogenic assay. A similar distinction between apoptosis and loss of clonogenicity was observed for the cancer chemotherapeutic agent VP-16. These results support our previous conclusions with photodynamic therapy: (a) assessing overall reproductive death of cancer cells requires a proliferation-based assay, such as clonogenicity; and (b) the critical staurosporine-induced lethal event is independent of those mediated by caspase-3.  相似文献   

14.
This study reports actin phosphorylation and coincident actin cytoskeleton alterations in renal epithelial cell line, LLC-PK1. Serine phosphorylation of actin was first observed in vitro after the cell lysate was incubated with phosphatase inhibitors and ATP. Both the phosphorylated actin and actin kinase activities were found in the cytoskeletal fraction. Actin phosphorylation was later detected in living LLC-PK1 cells after incubation with the phosphatase inhibitor calyculin A. Calyculin A-induced actin phosphorylation was associated with reorganization of the actin cytoskeleton, including net actin depolymerization, loss of cell-cell junction and stress fiber F-actin filaments, and redistribution of F-actin filaments in the periphery of the rounded cells. Actin phosphorylation was abolished by 3-h ATP depletion but not by the non-specific kinase inhibitor staurosporine. These results demonstrate that renal epithelial cells contain kinase/phosphatase activities and actin can be phosphorylated in LLC-PK1 cells. Actin phosphorylation may play an important role in regulating the organization of the actin cytoskeleton in renal epithelium.  相似文献   

15.
Activation of p38 mitogen-activated protein (MAP) kinase (MAPK) has been implicated in the mechanism of cardiomyocyte (CMC) protection and injury. The p38 MAPK controversy may be related to differential effects of this kinase on apoptosis and necrosis. We have hypothesized that p38 MAPK-mediated F-actin reorganization promotes apoptotic cell death, whereas it protects from osmotic stress-induced necrotic cell death. Cultured neonatal rat CMCs were subjected to 2 h of simulated ischemia followed by reoxygenation. p38 MAPK activity measured by phosphorylation of MAP kinase-activated protein (MAPKAP) kinase 2 was increased during simulated ischemia and reoxygenation. This was associated with translocation of heat shock protein 27 (HSP27) from the cytosolic to the cytoskeletal fraction and F-actin reorganization. Cytochrome c release from mitochondria, caspase-3 activation, and DNA fragmentation were increased during reoxygenation. Robust lactate dehydrogenase (LDH) release was observed under hyposmotic (140 mosM) reoxygenation. The p38 MAPK inhibitor SB-203580 abrogated activation of p38 MAPK, translocation of HSP27, and F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation. Conversely, SB-203580 enhanced LDH release during hyposmotic reoxygenation. The F-actin disrupting agent cytochalasin D inhibited F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation, whereas it enhanced LDH release during hyposmotic reoxygenation. When CMCs were incubated under the isosmotic condition for the first 15 min of reoxygenation, SB-203580 and cytochalasin D increased ATP content of CMCs and prevented LDH release after the conversion to the hyposmotic condition. These results suggest that F-actin reorganization mediated by activation of p38 MAPK plays a differential role in apoptosis and protection against osmotic stress-induced necrosis during reoxygenation in neonatal rat CMCs; however, the sarcolemmal fragility caused by p38 MAPK inhibition can be reversed during temporary blockade of physical stress during reoxygenation.  相似文献   

16.
Plasma membrane ingression during cytokinesis involves both actin remodeling and vesicle-mediated membrane addition. Vesicle-based membrane delivery from the recycling endosome (RE) has an essential but ill-defined involvement in cytokinesis. In the Drosophila melanogaster early embryo, Nuf (Nuclear fallout), a Rab11 effector which is essential for RE function, is required for F-actin and membrane integrity during furrow ingression. We find that in nuf mutant embryos, an initial loss of F-actin at the furrow is followed by loss of the associated furrow membrane. Wild-type embryos treated with Latrunculin A or Rho inhibitor display similar defects. Drug- or Rho-GTP-induced increase of actin polymerization or genetically mediated decrease of actin depolymerization suppresses the nuf mutant F-actin and membrane defects. We also find that RhoGEF2 does not properly localize at the furrow in nuf mutant embryos and that RhoGEF2-Rho1 pathway components show strong specific genetic interactions with Nuf. We propose a model in which RE-derived vesicles promote furrow integrity by regulating the rate of actin polymerization through the RhoGEF2-Rho1 pathway.  相似文献   

17.
Actin and vinculin are two of the most abundant cytoskeletal proteins, widely expressed in nearly all types of eukaryotic cells. It has been well established that long-term exposure to the tumor promoter phorbol myristate acetate (PMA) affects Sertoli cell morphology, as well as F-actin and vinculin organization in vitro. To analyze in a quantitative manner the F-actin and vinculin content of rat immature Sertoli cells in vitro in response to PMA exposure, cytoskeletal fractions were prepared following extraction with Triton X-100. Analysis of the isolated cytoskeletal fractions by immunoblotting showed that exposure of immature rat Sertoli cells to PMA for 8h has an appreciable effect on the cellular level of both the actin and vinculin. Interestingly, as revealed by using calphostin C, a specific protein kinase C inhibitor, the observed F-actin and vinculin changes are most probably mediated by a mechanism that depends on protein kinase activity. A discussion is made concerning PKC modulation by PMA and the subsequent actin and vinculin quantitative changes and reorganization, phenomena that have been closely related to cell transformation.  相似文献   

18.
Staurosporine produced DNA fragmentation characteristic of apoptosis and a dramatic alteration of cell structure that include alterations of cytoskeletal actin and cytoplasmic condensation with vacuolization. These changes were not induced by chelerythrine, a more specific PKC inhibitor than staurosporine. The calcium chelator, BAPTA, significantly reduced staurosporine-induced DNA fragmentation but did not affect staurosporine-induced changes in cytoskeletal actin. These data suggest that DNA fragmentation and actin degradation in apoptosis, induced by staurosporine, are under different regulatory control by calcium.  相似文献   

19.
Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and cofilin activity. The TGFβ-like activity of the vitreous may participate in this effect. Actin polymerization causes the cytoskeletal rearrangements that lead to the plasticity of vitreous-transformed RPE cells in PVR.  相似文献   

20.
Intermediary metabolites of cholesterol synthetic pathway are involved in cell proliferation. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, blocks mevalonate synthesis, and has been shown to inhibit mesangial cell proliferation associated with diverse glomerular diseases. Since inhibition of farnesylation and plasma membrane anchorage of the Ras proteins is one suggested mechanism by which lovastatin prevents cellular proliferation, we investigated the effect of lovastatin and key mevalonate metabolites on the activation of mitogen-activated protein kinase (MAP kinase) and Ras in murine glomerular mesangial cells. The preincubation of mesangial cells with lovastatin inhibited the activation of MAP kinase stimulated by either FBS, PDGF, or EGF. Mevalonic acid and farnesyl-pyrophosphate, but not cholesterol or LDL, significantly prevented lovastatin-induced inhibition of agonist-stimulated MAP kinase. Lovastatin inhibited agonist-induced activation of Ras, and mevalonic acid and farnesylpyrophosphate antagonized this effect. Parallel to the MAP kinase and Ras data, lovastatin suppressed cell growth stimulated by serum, and mevalonic acid and farnesylpyrophosphate prevented lovastatin-mediated inhibition of cellular growth. These results suggest that lovastatin, by inhibiting the synthesis of farnesol, a key isoprenoid metabolite of mevalonate, modulates Ras-mediated cell signaling events associated with mesangial cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号