首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding patterns and determinants of net primary productivity(NPP) in global grasslands is ongoing challenges, especially for belowground NPP(BNPP) and its fraction(fBNPP). By developing a comprehensive field-based dataset, we revealed that, along with gradients of mean annual precipitation, actual evapotranspiration, and aridity, aboveground NPP(ANPP), BNPP,and total NPP(TNPP) exhibited hump-shaped patterns, whereas fBNPPshowed an opposite trend. ANPP and TNPP showed positive correlations with mean annual temperature, but fBNPPwas negatively correlated with it. The relationship between BNPP and climatic factors was considerably weak, indicating that BNPP was relatively stable regardless of the climate conditions. We also observed that the sensitivities of ANPP and BNPP to interannual temperature variability and those of BNPP to interannual precipitation fluctuations exhibited large variations among different study sites, and differed from those at the spatial scale. In contrast, the temporal sensitivities of ANPP to interannual precipitation variability were highly similar across all the individual sites and much smaller than those at the spatial scale. Overall, these results highlight that precipitation, temperature and evapotranspiration all play vital roles in shaping ANPP pattern and its partitioning to belowground and that the patterns of BNPP along climatic gradients do not mirror those of the ANPP.  相似文献   

2.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   

3.
Net primary production (NPP) is a fundamental property of natural ecosystems. Understanding the temporal variations of NPP could provide new insights into the responses of communities to environmental factors. However, few studies based on long‐term field biomass measurements have directly addressed this subject in the unique environment of the Qinghai‐Tibet plateau (QTP). We examined the interannual variations of NPP during 2008–2015 by monitoring both aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP), and identified their relationships with environmental factors with the general linear model (GLM) and structural equation model (SEM). In addition, the interannual variation of root turnover and its controls were also investigated. The results show that the ANPP and BNPP increased by rates of 15.01 and 143.09 g/m2 per year during 2008–2015, respectively. BNPP was mainly affected by growing season air temperature (GST) and growing season precipitation (GSP) rather than mean annual air temperature (MAT) or mean annual precipitation (MAP), while ANPP was only controlled by GST. In addition, available nitrogen (AN) was significantly positively associated with BNPP and ANPP. Root turnover rate averaged 30%/year, increased with soil depth, and was largely controlled by GST. Our results suggest that alpine Kobresia meadow was an N‐limited ecosystem, and the NPP on the QTP might increase further in the future in the context of global warming and nitrogen deposition.  相似文献   

4.
The dynamics of belowground net primary productivity (BNPP) is of fundamental importance in understanding carbon (C) allocation and storage in grasslands. However, our knowledge of the interannual variability in response of BNPP to ongoing global warming is limited. In this study, we explored temporal responses of BNPP and net primary productivity (NPP) partitioning to warming and clipping in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate soil temperature by approximately 2 °C since November 1999. Annual clipping was to mimic hay harvest. On average from 2005 to 2009, warming increased BNPP by 41.89% in the unclipped subplots and 66.93% in the clipped subplots, with significant increase observed in wet years. Clipping also had significant positive impact on BNPP, which was mostly found under warming. Overall, fBNPP, the fraction of BNPP to NPP, increased under both warming and clipping treatments, more in dry years. Water availability (either precipitation or soil moisture) was the most limiting factor for both BNPP and fBNPP. It strongly dominated the interannual variability in NPP, fBNPP, and their responses to warming and clipping. Our results suggest that water availability regulates tallgrass prairie's responses to warming and land use change, which may eventually influence the global C cycle. With increasing variability in future precipitation patterns, warming effects on the vegetation in this region may become less predictable.  相似文献   

5.
基于2008—2016年青海海北站9年净初级生产力及气候因子监测数据,分析了青藏高原高寒小嵩草草甸和高寒金露梅灌丛两种植被净初级生产力年际动态,并探讨了气候因子对其影响及其不同土层深度根系周转值特征。结果表明:(1)年际尺度上,小嵩草草甸地上净初级生产力表现为显著增加趋势,增幅为7.02 g m~(-2) a~(-1),而金露梅灌丛地上净初级生产力相对较为稳定;对于其地下净初级生产力和总生产力,小嵩草草甸和金露梅灌丛均表现为增加趋势(P0.05),9年间小嵩草草甸地上、地下和总净初级生产力平均值分别为(217.55±9.95)、(1882.75±161.33) g m~(-2) a~(-1)和(2100.30±163.38) g m~(-2) a~(-1),金露梅灌丛地上、地下和总净初级生产力9年间平均值分别为(256.27±11.4)、(1614.31±173.03) g m~(-2) a~(-1)和(1870.58±177.93) g m~(-2) a~(-1)。(2)不同植被类型地上净初级生产力对气候因素响应不同,金露梅灌丛地上净初级生产力主要受温度影响,而温度对小嵩草草甸地上净初级生产力无显著影响。此外,降水不是限制高寒生态系统草地地上净初级生产力主要因子,相比于降水影响,高寒生态系统地上净初级生产力更受温度调控。(3)年均温和年降水对金露梅灌丛和小嵩草草甸地下净初级生产力均无显著影响(P0.05),表明高寒生态系统,其地下生产力受外界气候条件变化影响微弱,是一个稳定的碳库。(4)两种植被类型其根系周转值均随着土壤深度的增加呈逐渐增加趋势,且高寒灌丛根系周转值明显高于高寒草甸根系周转值。研究表明,在全球气候变暖背景下将会增加金露梅灌丛地上净初级生产力,而对小嵩草草甸地上净初级生产力无显著影响。  相似文献   

6.
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2‐year experiment in three US Great Plains grasslands – the C4‐dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3‐dominated northern mixed grass prairie (NMP; intermediate ANPP) – to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high‐rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11–13) small or (ii) fewer (3–5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3‐dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above‐ and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.  相似文献   

7.
From 1975 to 1993, aboveground net primary production (NPP) at the Konza Prairie Research Natural Area in NE Kansas varied from 179 g/m to 756 g/m. Across a variety of sites, NPP was significantly related to precipitation (r = 0.37), but much variability was unexplained. Thus, we evaluated the relationship between NPP with meteorological variables and soil moisture measurements in tallgrass prairie sites that varied in fire frequency and topographic position. Annually burned lowland sites had significantly higher NPP than either annually burned upland or unbumed sites. NPP in burned sites was more strongly related to meteorological variables and soil moisture when compared to unbumed sites. The lack of significant correlation between soil moisture with NPP on unbumed sites suggests that factors other than water availability limit production in these sites. When NPP data were analyzed separately by life forms, interannual variability in forb NPP was not correlated with any meteorological variables, but was negatively correlated with grass NPP (r = -0.49). The inability of a single factor, such as precipitation to explain a large portion of the interannual variability in NPP is consistent with the concept that patterns of NPP in tallgrass prairie are a product of spatial and temporal variability in light, water, and nutrients, driven by a combination of topography, fire history, and climate.  相似文献   

8.
Populations at the high latitude edge of species’ geographical ranges are thought to show larger interannual population fluctuations, with subsequent higher local extinction risk, than those within the ‘core’ climatic range. As climate envelopes shift northward under climate warming, however, we would expect populations to show dampened variability. We test this hypothesis using annual abundance indices from 19 butterfly species across 79 British monitoring sites between 1976 and 2009, a period of climatic warming. We found that populations in the latter (warmer) half of the recording period show reduced interannual population variability. Species with more southerly European distributions showed the greatest dampening in population variability over time. Our results suggest that increases in population variability occur towards climatic range boundaries. British sites, previously existing at the margins of suitable climate space, now appear to fall closer to the core climatic range for many butterfly species.  相似文献   

9.
Abstract. Our objective was to analyse the interannual variability of different characteristics of the seasonal dynamics of NDVI and their relationships with climatic variables for grassland and shrubland sites of North America. We selected twenty-five sites located in relatively undisturbed areas. We analysed the variability of seven traits derived from the annual dynamics of the NDVI at each site: the annual integral, the difference between maximum and minimum NDVI, the dates of the inflection points of a double logistic model fitted to the NDVI curve, the difference between these dates, the date of maximum NDVI, and the coefficient of determination of the double logistic model. The temporal variability of traits that integrated aspects of primary productivity over the year was lower than those related to seasonality. This suggests that from year to year, grassland and shrubland ecosystems would differ more in the timing of production and senescence than in the total amount of carbon fixed. The integral of NDVI showed less temporal variability than annual precipitation. The coefficient of variation of both precipitation and the NDVI integral were positively related. The slope of the relationship was significantly lower than 1, indicating that the variability of ecosystem function is a lower proportion of the variability of annual precipitation in areas with a high relative variability of this climatic variable than in areas of low variability. The variability of most of the NDVI traits analysed showed a negative and, in general, non-linear relationship with annual precipitation. The same kind of relationship has been reported elsewhere for annual precipitation and its coefficient of variation. Mean annual precipitation has been reported as the main control of above-ground net primary production in grassland and shrubland ecosystems. Our results suggest that this climatic variable is also associated with the interannual variability of carbon gains, such as the primary production and its seasonality.  相似文献   

10.
Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site‐years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 – 1000 mm in annual precipitation and records of 4–9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site‐level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis–ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site‐level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long‐term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100‐mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm?2 yr?1. Most of the unexplained NEP variability was related to persistent, site‐specific function, suggesting prioritization of research on slow‐changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site‐level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.  相似文献   

11.
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta‐analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.  相似文献   

12.
内蒙古草原区植被净初级生产力及其与气候的关系   总被引:12,自引:0,他引:12  
龙慧灵  李晓兵  王宏  魏丹丹  张程 《生态学报》2010,30(5):1367-1378
利用NOAA/AVHRR GIMMSNDVI数据、土地覆盖分类数据、气象数据等,基于改进的基于光能利用率的净初级生产力(Net Primary productivity,NPP)遥感估算模型对内蒙古草原区1982-2006年的NPP进行估算,并分别以年、季节和月为时间单位,计算基于像元的NPP与降水、温度之间的相关及偏相关系数,分析不同时间单位及尺度上NPP与气候的关系。结果表明,1982-2006年内蒙古草原区NPP总量呈波动增加的趋势,平均增加值为0.861Mt C/a。以年为时间单位,内蒙古草原区年NPP与降水的关系比较明显。以季节为时间单位,年际春季和夏季NPP与降水的关系比较明显,秋季二者关系相对较弱,春季和秋季NPP与温度的相关系数和偏相关系数空间格局比较一致,且相关性明显高于夏季。以月为时间单位的相关水平明显高于年际水平,多年平均年内月NPP与降水、温度的相关程度明显增强,除去降水的影响,月均温对NPP的影响明显下降,且空间格局也有明显的变化,说明以月为时间单位在年内尺度上降水对植被生长的影响比温度要大。而以4、7、10月份为例,在年际尺度上,虽然各月份NPP均受降水的影响较大,但与降水关系最为密切的是4月份和10月份NPP,与之相比,7月份NPP与温度的关系明显高于其他两月。  相似文献   

13.
Spatial and temporal variations in net primary production (NPP) are of great importance to ecological studies, natural resource management, and terrestrial carbon sink estimates. However, most of the existing estimates of interannual variation in NPP at regional and global scales were made at coarse resolutions with climate-driven process models. In this study, we quantified global NPP variation at an 8 km and 10-day resolution from 1981 to 2000 based on satellite observations. The high resolution was achieved using the GLObal Production Efficiency Model (GLO-PEM), which was driven with variables derived almost entirely from satellite remote sensing. The results show that there was an increasing trend toward enhanced terrestrial NPP that was superimposed on high seasonal and interannual variations associated with climate variability and that the increase was occurring in both northern and tropical latitudes. NPP generally decreased in El Niño season and increased in La Niña seasons, but the magnitude and spatial pattern of the response varied widely between individual events. Our estimates also indicate that the increases in NPP during the period were caused mainly by increases in atmospheric carbon dioxide and precipitation. The enhancement of NPP by warming was limited to northern high latitudes (above 50°N); in other regions, the interannual variations in NPP were correlated negatively with temperature and positively with precipitation.  相似文献   

14.
Aim To examine the global pattern of the net primary production (NPP)/gross primary production (GPP) ratio of the Earth's land area along geographical and climatic gradients. Location The global planetary ecosystem. Methods The 4‐year average annual NPP/GPP ratio of the Earth's land area was calculated using 2000–03 Moderate Resolution Imaging Spectroradiometer (MODIS) data. The global pattern of the NPP/GPP ratio was investigated by comparing it among each typical terrestrial ecosystem and plotting it along a geographical and climatic gradient, including latitude, altitude, temperature and precipitation. Results The global terrestrial ecosystem had an average NPP/GPP ratio value of 0.52 with minor variation from 2000 to 2003. However, the NPP/GPP ratio showed considerable spatial variation associated with ecosystem type, geographical location and climate. Densely vegetated ecosystems had a lower NPP/GPP ratio than sparsely vegetated ecosystems. Forest ecosystems had a lower NPP/GPP ratio than shrub and herbaceous ecosystems. Geographically, the NPP/GPP ratio increased with altitude. In the Southern Hemisphere, the NPP/GPP ratio decreased along latitude from 30° to 10° and it exhibited high fluctuation in the Northern Hemisphere. Climatically, the NPP/GPP ratio exhibited a decreasing trend along enhanced precipitation when it was less than 2300 mm year?1 and a static trend when the annual precipitation was over 2300 mm. The NPP/GPP ratio showed a decreasing trend along temperature when it was between –20 °C and 10 °C, and showed an increasing trend along rising temperature when it was between –10 °C and 20 °C. Within each ecosystem, the NPP/GPP ratio revealed a similar trend to the global trend along temperature and precipitation. Conclusions The NPP/GPP ratio exhibited a pattern depending on the main climatic characteristics such as temperature and precipitation and geographical factors such as latitude and altitude. The findings of this research challenge the widely held assumption that the NPP/GPP ratio is consistent regardless of ecosystem type.  相似文献   

15.
Aim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types. Location A global range of sites from tundra to rain forest. Methods We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between ?13 and 26°C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS). Results Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra‐annual variability of the RUE at the coldest energy‐limited sites. Main conclusions Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra‐annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra‐annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling.  相似文献   

16.
Aims A lack of explicit information on differential controls on net primary productivity (NPP) across regions and ecosystem types is largely responsible for uncertainties in global trajectories of terrestrial carbon balance with changing environment. The objectives of this study were to determine how NPP of different forest types would respond to inter-annual variability of climate and to examine the responses of NPP to future climate change scenarios across contrasting forest types in northern China.Methods We investigated inter-annual variations of NPP in relation to climate variability across three forest types in northern China, including a boreal forest dominated by Larix gmelinii Rupr., and two temperate forests dominated by Pinus tabulaeformis Carr. and Quercus wutaishanica Mayr., respectively, and studied the responses of NPP in these forests to predicted changes in climate for the periods 2011–40, 2041–70 and 2070–100 under carbon emission scenarios A2 and B2 of Intergovernmental Panel on Climate Change. We simulated the responses of NPP to predicted changes in future climate as well as inter-annual variability of the present climate with the Biome-BGC version 4.2 based on site- and species-specific parameters. The modeled forest NPP data were validated against values in literature for similar types of forests and compared with inter-annual growth variations reflected by tree-ring width index (RWI) at the study sites.Important findings Inter-annual variations in modeled NPP during the period 1960–06 were mostly consistent with the temporal patterns in RWI. There were contrasting responses of modeled NPP among the three forest types to inter-annual variability of the present climate as well as to predicted changes in future climate. The modeled NPP was positively related to annual mean air temperature in the L. gmelinii forest (P < 0.001), but negatively in the P. tabulaeformis forest (P = 0.05) and the Q. wutaishanica forest (P = 0.03), while the relationships of modeled NPP with annual precipitation for the three forest types were all positive. Multiple stepwise regression analyses showed that temperature was a more important constraint of NPP than precipitation in the L. gmelinii forest, whereas precipitation appeared to be a prominent factor limiting the growth in P. tabulaeformis and Q. wutaishanica. Model simulations suggest marked, but differential increases in NPP across the three forest types with predicted changes in future climate.  相似文献   

17.
中国北方林生产力变化趋势及其影响因子分析   总被引:12,自引:0,他引:12  
森林生产力是反映森林固碳能力的重要指标,是进行碳循环研究的重要环节。用模拟生态系统生物地球化学循环的CENTURY模型,模拟中国北方林(兴安落叶松林)近35a来的生产力动态,用3种趋势分析方法,检验了其变化趋势,并用多元线性回归模型分析了中国北方林生产力的年际波动与气温降水年际波动的关系,以及气温和降水对我国北方林生产力的影响程度。结果表明:中国北方林生产力呈增加的趋势,平均年增长率为0.34%;气温与森林生产力呈显著负相关,对森林生产力的贡献因子为4.0977;降水与森林生产力呈弱的正相关,其对森林生产力的贡献因子为0.3902。从而说明近35a来森林生产力的增加除了受气温降水等非生物因素的影响外,还受其它因素的影响;另外说明以气候变暖为标志的全球变化会对森林生产力产生重要的影响。  相似文献   

18.
邵璞  曾晓东 《生态学报》2011,31(6):1494-1505
采用改进后的通用陆面模式的动态植被模式(CLM-DGVM)研究当前气候条件下气候年际变率对全球潜在植被平均分布的影响。设计两组区域数值实验,一组使用基于NCEP再分析资料衍生的1960-1999年多年气象数据循环驱动,对照实验使用这40a的气候平均态或单年气象资料驱动(即没有气候年际变率),分别考察有无气候年际变化对热带、温带和寒带的潜在植被分布平衡态的影响。在此基础上以1950-1999年上述数据及对应的气候平均态为驱动做两组全球实验。结果表明气候年际变率导致全球植被总覆盖度下降,其中树和灌木减少而草增加;全球平均覆盖度的变化按常绿树、草、灌木、落叶树顺序递减,而相对变化(即格点覆盖度差异的绝对值的全球平均值与气候平均态下植物覆盖度的比值)按灌木、草、落叶树、常绿树顺序递减。在温度、降水、风速、比湿、光照、气压等6种气候因子中降水年际变率对于植被平均分布影响最显著。受降水影响,当年降水小于1200mm时植被总覆盖度的差异随其变率增加而下降,其它时候影响不明显。年降水小于1500mm时树减少,幅度随其年际变率变大而增加。常绿树无论降水多寡均减少,而落叶树在年降水大于1500mm时随其变率变大而增加。草在年降水小于1500mm、变率为中等时差异最大,降水较大时其年际变化对草的影响不大。温度年际变率对落叶树分布影响不大而使常绿树减少,尤其是在寒带,其幅度大致随变率增加而变大。草主要在温度高于-10℃增加而灌木在温度低于0℃增加。植被总体覆盖度在温度高于0℃时受影响普遍降低,降低的区域对应于温度年际变率较大的区域。以上结果说明用气候模式或生物地理模式预测未来植物分布时要同时考虑气候平均态和气候变率两方面的变化。  相似文献   

19.
Eight years (1994–2001) of field data and a biogeochemical process model, BIOME-BGC, were used to examine effects of local topography and inter-annual climatic variability on soil physical (i.e., soil moisture and temperature) and biogeochemical (i.e., organic matter content, soil respiration, and leaf litter production) variables in a temperate hardwood forest in Korea. The field data were collected from adjacent south-facing (S) and north-facing (N) slopes, respectively, to examine effects of local topography, and were utilized to validate predictability according to BIOME-BGC which was applied to model unmeasured hydro-ecological processes [i.e., evapotranspiration, net primary production (NPP), and net ecosystem exchange of carbon]. Our field-data analyses indicated that soil-related variables including soil temperature, water content, organic matter, soil respiration, and floor leaf litter store significantly differed between the S and N slopes, while leaf litter production did not differ as significantly as the soil-related variables. The BIOME-BGC predictions showed good agreement with the mean field data aggregated across the slopes. Our simulation results and field observations indicated that the inter-annual variations of leaf litter production and maximum leaf area index were best explained by precipitation, both at a 1-year lag, while variation in annual NPP was well correlated with precipitation without a temporal lag. Our results imply that: (1) local topography needs to be explicitly considered in ecosystem studies as a forcing function generating spatial heterogeneity in soil physical and biogeochemical variables within a rugged landscape, and (2) water limits vegetation productivity in our study forest, in spite of a relatively high annual precipitation rate (1,579 mm year–1).  相似文献   

20.
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP, defined as the fraction of belowground NPP (BNPP) to NPP], and rain‐use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed‐grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP, and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP, RUEBNPP, and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP, RUEBNPP, and RUENPP. Clipping interacted with altered precipitation in impacting RUEANPP, RUEBNPP, and RUENPP, suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP. These findings suggest that BNPP is critical point to future research. Additionally, results from single‐factor manipulative experiments should be treated with caution due to the non‐additive interactive effects of warming with altered precipitation and land use (clipping).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号