首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Gaseous N losses from disturbed and reference forested watersheds at the Coweeta Hydrologic Laboratory in western North Carolina were studied by in situ N2O diffusion measurements and laboratory incubations throughout a 10-month period. Soil temperature, percent base saturation, and water-filled pore space accounted for 43% of the variation in in situ N2O diffusion measurements. Laboratory incubations distinguished the gaseous N products of nitrification and denitrification. Nitrifying activity, ambient NO3, and nitrification N2O were positively correlated with percent base saturation. However, differences between watersheds in soil N substrate caused by presence of leguminous black locust in the disturbed watershed were confounded with differences in soil acidity. Denitrification was most strongly affected by soil moisture, which in turn was determined by precipitation events and slope position. Gaseous N losses from well-drained midslope and toeslope landscape positions appeared to be minor relative to other N transformations. Favorable conditions for denitrification occurred at a poorly drained site near the stream of the disturbed watershed. Laboratory incubations revealed high rates of NO3 reduction in these soils. We speculate that the riparian zone is a major site of depletion of NO3 from the soil solution via denitrification.  相似文献   

2.
Microzonation of denitrification was studied in stream sediments by a combined O2 and N2O microsensor technique. O2 and N2O concentration profiles were recorded simultaneously in intact sediment cores in which C2H2 was added to inhibit N2O reduction in denitrification. The N2O profiles were used to obtain high-resolution profiles of denitrification activity and NO3 distribution in the sediments. O2 penetrated about 1 mm into the dark-incubated sediments, and denitrification was largely restricted to a thin anoxic layer immediately below that. With 115 μM NO3 in the water phase, denitrification was limited to a narrow zone from 0.7 to 1.4 mm in depth, and total activity was 34 nmol of N cm−2 h−1. With 1,250 μM NO3 in the water, the denitrification zone was extended to a layer from 0.9 to 4.8 mm in depth, and total activity increased to 124 nmol of N cm−2 h−1. Within most of the activity zone, denitrification was not dependent on the NO3 concentration and the apparent Km for NO3 was less than 10 μM. Denitrification was the only NO3-consuming process in the dark-incubated stream sediment. Even in the presence of C2H2, a significant N2O reduction (up to 30% of the total N2O production) occurred in the reduced, NO3-free layers below the denitrification zone. This effect must be corrected for during use of the conventional C2H2 inhibition technique.  相似文献   

3.
Summary To examine the effect of barley roots on denitrification, a pot experiment was designed to compare N2O production and denitrification in soils with and without barley plants. Denitrification, N2O resulting from denitrification and nitrification, and respiration were estimated by incubating pots with soil with and without intact plants in plastic bags at high moisture levels. C2H2-inhibition of nitrous oxide reductase (partial pressure of 10 kPa C2H2) was used to determine total denitrification rates while incubations with ambient air and with C2H2 at partial pressures of 2.5–5 Pa were used to estimate the amounts of N2O released from autotrophic nitrification and from denitrification processes. Other sources of N2O were presumed to be negligible. Potential denitrification, nitrification and root biomass were measured in subsamples collected from four soil depths. A positive correlation was found between denitrification rates and root biomass. N2 was the predominant denitrification product found close to roots; N2O formed by non autotrophic nitrifiers, assumed to be denitrifiers originated in soil not affected by growing roots. Apparently, roots promote denitrification because they consumed oxygen, thereby increasing the anaerobic volume of the soil. The ratio of actual to potential denitrification rates increased over time, especially in the presence of roots.  相似文献   

4.
Denitrification Associated with Periphyton Communities   总被引:3,自引:2,他引:1       下载免费PDF全文
Scrapings of decomposing Cladophora sp. mats (periphyton) covering stream bed rocks produced N2O when incubated under N2 plus 15% C2H2. Denitrification (N2O formation) was enhanced by NO3 and was inhibited by autoclaving, Hg2+, and O2. No N2O was formed in the absence of C2H2 (air or N2 atmosphere). Chloramphenicol did not block N2O formation, indicating that the enzymes were constitutive. In field experiments, incubation of periphyton scrapings in the light inhibited denitrification because of algal photosynthetic O2 production. The diurnal periphyton-associated denitrification rate was estimated to be 45.8 μmol of N2O·m−2·day−1, as determined by averaging light, aerobic plus dark, and anaerobic rates over a 24-h period.  相似文献   

5.
Denitrification activity was shown in the deep, low-oxygen waters of the Baltic proper by both in vitro and in situ methods. The vertical distribution of NO3 in the water column showed nitrate consumption and NO2 and N2O maxima in the deep waters when O2 was below 0.2 ml liter−1, which is suggestive evidence for denitrification. Direct in situ evidence for denitrification was obtained by finding an N2 saturation of up to 108% in the deep waters. When these waters were incubated with 15NO3, 15N2 was produced. Quantification of the denitrification rate done by the addition of C2H2 to water samples from the active depths showed a rate of about 0.10 μmol liter−1 day−1.  相似文献   

6.
We used a combination of 15N tracer methods and a C2H2 blockage technique to determine the role of sediment nitrification and denitrification in a deep oligotrophic arctic lake. Inorganic nitrogen concentrations ranged between 40 and 600 nmol · cm−3, increasing with depth below the sediment-water interface. Nitrate concentrations were at least 10 times lower, and nitrate was only detectable within the top 0 to 6 cm of sediment. Eh and pH profiles showed an oxidized surface zone underlain by more reduced conditions. The lake water never became anoxic. Sediment Eh values ranged from −7 to 484 mV, decreasing with depth, whereas pH ranged from 6.0 to 7.3, usually increasing with depth. The average nitrification rate (49 ng of N · cm−3 · day−1) was similar to the average denitrification rate (44 ng of N · cm−3 · day−1). In situ N2O production from nitrification and denitrification ranged from 0 to 25 ng of N · cm−3 · day−1. Denitrification appears to depend on the supply of nitrate by nitrification, such that the two processes are coupled functionally in this sediment system. However, the low rates result in only a small nitrogen loss.  相似文献   

7.
Nitrogen and oxygen transformations were studied in a bioturbated (reworked by animals) estuarine sediment (Norsminde Fjord, Denmark) by using a combination of 15N isotope (NO3-), specific inhibitor (C2H2), and microsensor (N2O and O2) techniques in a continuous-flow core system. The estuarine water was NO3- rich (125 to 600 μM), and NO3- was consistently taken up by the sediment on the four occasions studied. Total NO3- uptake (3.6 to 34.0 mmol of N m-2 day-1) corresponded closely to N2 production (denitrification) during the experimental steady state, which indicated that dissimilatory, as well as assimilatory, NO3- reduction to NH4+ was insignificant. When C2H2 was applied in the flow system, denitrification measured as N2O production was often less (58 to 100%) than the NO3- uptake because of incomplete inhibition of N2O reduction. The NO3- formed by nitrification and not immediately denitrified but released to the overlying water, uncoupled nitrification, was calculated both from 15NO3- dilution and from changes in NO3- uptake before and after C2H2 addition. These two approaches gave similar results, with rates ranging between 0 and 8.1 mmol of N m-2 day-1 on the four occasions. Attempts to measure total nitrification activity by the difference between NH4+ fluxes before and after C2H2 addition failed because of non-steady-state NH4+ fluxes. The vertical distribution of denitrification and oxygen consumption was studied by use of N2O and O2 microelectrodes. The N2O profiles measured during the experimental steady state were often irregularly shaped, and the buildup of N2O after C2H2 was added was much too fast to be described by a simple diffusion model. Only bioturbation by a dense population of infauna could explain these observations. This was corroborated by the relationship between diffusive and total fluxes, which showed that only 19 to 36 and 29 to 62% of the total O2 uptake and denitrification, respectively, were due to diffusion-reaction processes at the regular sediment surface, excluding animal burrows.  相似文献   

8.
Estavillo  JM  Merino  P  Pinto  M  Yamulki  S  Gebauer  G  Sapek  A  Corré  W 《Plant and Soil》2002,239(2):253-265
Soils are an important source of N2O, which can be produced both in the nitrification and the denitrification processes. Grassland soils in particular have a high potential for mineralization and subsequent nitrification and denitrification. When ploughing long term grassland soils, the resulting high supply of mineral N may provide a high potential for N2O losses. In this work, the short-term effect of ploughing a permanent grassland soil on gaseous N production was studied at different soil depths. Fertiliser and irrigation were applied in order to observe the effect of ploughing under a range of conditions. The relative proportions of N2O produced from nitrification and denitrification and the proportion of N2 gas produced from denitrification were determined using the methyl fluoride and acetylene specific inhibitors. Irrespectively to ploughing, fertiliser application increased the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). Application of fertiliser also increased the denitrification N2O/N2 ratio both in the denitrification potential and in the gaseous N productions by denitrification. Ploughing promoted soil organic N mineralization which led to an increase in the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). In both the ploughed and unploughed treatments the 0–10 cm soil layer was the major contributing layer to gaseous N production by all the above processes. However, the contribution of this layer decreased by ploughing, gaseous N productions from the 10 to 30 cm layer being significantly increased with respect to the unploughed treatment. Ploughing promoted both nitrification and denitrification derived N2O production, although a higher proportion of N2O lost by denitrification was observed as WFPS increased. Recently ploughed plots showed lower denitrification derived N2O percentages than those ploughed before as a result of the lower soil water content in the former plots. Similarly, a lower mean nitrification derived N2O percentage was found in the 10–30 cm layer compared with the 0–10 cm.  相似文献   

9.
Denitrification in San Francisco Bay Intertidal Sediments   总被引:23,自引:17,他引:6       下载免费PDF全文
The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3 + NO2 concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3 + NO2 concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).  相似文献   

10.
Nitrous oxide (N2O) emissions from inland waters remain a major source of uncertainty in global greenhouse gas budgets. N2O emissions are typically estimated using emission factors (EFs), defined as the proportion of the terrestrial nitrogen (N) load to a water body that is emitted as N2O to the atmosphere. The Intergovernmental Panel on Climate Change (IPCC) has proposed EFs of 0.25% and 0.75%, though studies have suggested that both these values are either too high or too low. In this work, we develop a mechanistic modeling approach to explicitly predict N2O production and emissions via nitrification and denitrification in rivers, reservoirs and estuaries. In particular, we introduce a water residence time dependence, which kinetically limits the extent of denitrification and nitrification in water bodies. We revise existing spatially explicit estimates of N loads to inland waters to predict both lumped watershed and half‐degree grid cell emissions and EFs worldwide, as well as the proportions of these emissions that originate from denitrification and nitrification. We estimate global inland water N2O emissions of 10.6–19.8 Gmol N year?1 (148–277 Gg N year?1), with reservoirs producing most N2O per unit area. Our results indicate that IPCC EFs are likely overestimated by up to an order of magnitude, and that achieving the magnitude of the IPCC's EFs is kinetically improbable in most river systems. Denitrification represents the major pathway of N2O production in river systems, whereas nitrification dominates production in reservoirs and estuaries.  相似文献   

11.
Samples of sediment from Lake St. George, Ontario, Canada, were incubated in the laboratory under an initially aerobic gas phase and under anaerobic conditions. In the absence of added nitrate (NO3) there was O2-dependent production of nitrous oxide (N2O), which was inhibited by acetylene (C2H2) and by nitrapyrin, suggesting that coupled nitrification-denitrification was responsible. Denitrification of added NO3 was almost as rapid under an aerobic gas phase as under anaerobic conditions. The N2O that accumulated persisted in the presence of 0.4 atm of C2H2, but was gradually reduced by some sediment samples at lower C2H2 concentrations. Low rates of C2H2 reduction were observed in the dark, were maximal at 0.2 atm of C2H2, and were decreased in the presence of O2, NO3, or both. High rates of light-dependent C2H2 reduction occurred under anaerobic conditions. Predictably, methane (CH4) production, which occurred only under anaerobiosis, was delayed by added NO3 and inhibited by C2H2. Consumption of added CH4 occurred only under aerobic conditions and was inhibited by C2H2.  相似文献   

12.
《Bioresource technology》2000,71(2):159-165
The purposes of this study were to evaluate the potential production of nitrous oxide (N2O), which is known as a greenhouse gas, to identify the reaction responsible for it and to examine the effects of oxygen and moisture content on nitrification, denitrification and N2O production. Applying a tracer method using a 15N-isotope into an oxygen controllable reactor with artificial refuse proved that biological denitrification was a main source of released N2O even when the oxygen of the bulk atmosphere was as high as 15%. Calculating the mass balance for nitrogenous compounds showed that only denitrification occurred as the sole microbial process when the bulk oxygen was 0–5%. With increasing oxygen above 5% nitrification also began to occur simultaneously with denitrification. As the bulk space of the refuse became aerobic, the total amount of N2 produced from denitrification decreased but the proportion of N2O in the (N2 + N2O) increased. Denitrification was the main source of released N2O when the moisture content was between 40–60% and oxygen 10%. The amounts of nitrification, denitrification and N2 production increased as the moisture content increased.  相似文献   

13.
High-resolution NO3 profiles in freshwater sediment covered with benthic diatoms were obtained with a new microscale NO3 biosensor characterized by absence of interference from chemical species other than NO2 and N2O. Analysis of the microprofiles obtained indicated no nitrification during darkness, high rates of nitrification and a tight coupling between nitrification and denitrification during illumination, and substantial rates of NO3 assimilation during illumination. Nitrification during darkness could be induced by purging the bulk water with O2 gas, indicating that the stimulatory effect on nitrification by illumination was caused by algal production of O2. NH4+ addition did not stimulate nitrification during darkness when O2 was restricted to the upper 1-mm layer, and there was thus a low nitrification potential in the permanently oxic top 1 mm of the sediment.  相似文献   

14.
We screened soybean rhizobia originating from three germplasm collections for the ability to grow anaerobically in the presence of NO3 and for differences in final product formation from anaerobic NO3 metabolism. Denitrification abilities of selected strains as free-living bacteria and as bacteroids were compared. Anaerobic growth in the presence of NO3 was observed in 270 of 321 strains of soybean rhizobia. All strains belonging to the 135 serogroup did not grow anaerobically in the presence of NO3. An investigation with several strains indicated that bacteria not growing anaerobically in the presence of NO3 also did not utilize NO3 as the sole N source aerobically. An exception was strain USDA 33, which grew on NO3 but failed to denitrify. Dissimilation of NO3 by the free-living cultures proceeded without the significant release of intermediate products. Nitrous oxide reductase was inhibited by C2H2, but preceding steps of denitrification were not affected. Final products of denitrification were NO2, N2O, or N2; serogroups 31, 46, 76, and 94 predominantly liberated NO2, whereas evolution of N2 was prevalent in serogroups 110 and 122, and all three were formed as final products by strains belonging to serogroups 6 and 123. Anaerobic metabolism of NO3 by bacteroid preparations of Bradyrhizobium japonicum proceeded without delay and was evident by NO2 accumulation irrespective of which final product was formed by the strain as free-living bacteria. Anaerobic C2H2 reduction in the presence of NO3 was observed in bacteroid preparations capable of NO3 respiration but was absent in bacteria that were determined to be deficient in dissimilatory nitrate reductase.  相似文献   

15.
A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N2 gas species (28N2, 29N2, and 30N2) were monitored during incubation experiments after the addition of 15NO3. Formulas were developed to estimate the production (denitrification) and consumption (N2 fixation) of N2 gas from the fluxes of the different isotopic forms of N2. Proportions of the three isotopic forms produced from 15NO3 and 14NO3 agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 μg-atoms of N m−2 h−1. They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N2 production rates due to denitrification could be separated from high N2 consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 μg-atoms of N m−2 h−1) were lower than nitrogen fixation rates (average, 60 μg-atoms of N m−2 h−1). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N2 isotope capability, it was possible to do isotope-pairing experiments with the MIMS system.  相似文献   

16.
Production and sources of N2O were determined in soil columns amended with autoclaved yeast cells either mixed into or added as 0.5 cm3 lumps to the soil in combination with no or 200 g NO3 --N g-1. At four occasions over a two-week study period, subsets of cores were measured for N2O production during 4-hour incubations under atmospheres of ambient air, 10 Pa of C2H2, and N2, respectively. Denitrification enzyme activity (DEA) was assessed in subsamples of cores that had been incubated continuously under air.Autoclaved yeast provided a C-source readily available for denitrifying bacteria in the soil. Nitrous oxide production was negligible in unamended columns whereas accumulated N2O losses in the presence of yeast material were substantial, varying between 15 to 49 ng N2O-N g-1 h-1. Mixing yeast into the soil caused the highest production of N2O followed by the yeast lump and no yeast treatments. Incubation in the presence of 10 Pa C2H2 indicated that denitrification was the sole source of N2O, in accordance with an increase in DEA. Nitrous oxide production and DEA peaked after 4–7 days of incubation, and both were unaffected by additional NO3 -. Two-to four-fold responses to anaerobiosis and accumulation of NO3 - and NH4 + in proximity of the lumps indicated that N2O production here was limited by relatively low C-availability. In contrast, 10- to 12-fold responses to anaerobiosis and no accumulation of inorganic N suggested a higher C-availability where yeast was mixed into the soil.  相似文献   

17.
The capacity for dissimilatory reduction of NO3 to N2 (N2O) and NH4+ was measured in 15NO3-amended marine sediment. Incubation with acetylene (7 × 10−3 atmospheres [normal]) caused accumulation of N2O in the sediment. The rate of N2O production equaled the rate of N2 production in samples without acetylene. Complete inhibition of the reduction of N2O to N2 suggests that the “acetylene blockage technique” is applicable to assays for denitrification in marine sediments. The capacity for reduction of NO3 by denitrification decreased rapidly with depth in the sediment, whereas the capacity for reduction of NO3 to NH4+ was significant also in deeper layers. The data suggested that the latter process may be equally as significant as denitrification in the turnover of NO3 in marine sediments.  相似文献   

18.
Nitrogen loss from grassland on peat soils through nitrous oxide production   总被引:2,自引:0,他引:2  
Koops  J.G.  van Beusichem  M.L.  Oenema  O. 《Plant and Soil》1997,188(1):119-130
Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in relation to N input and to determine the relative contribution of nitrification and denitrification to N2O production. Measurements were carried out on a weekly basis in 2 grasslands on peat soil (Peat I and Peat II) for 2 years (1993 and 1994) using intact soil core incubations. In additional experiments distinction between N2O from nitrification and denitrification was made by use of the gaseous nitrification inhibitor methyl fluoride (CH3F).Nitrous oxide production over the 2 year period was on average 34 kg N ha-1 yr-1 for mown treatments that received no N fertiliser and 44 kg N ha-1 yr-1 for mown and N fertilised treatments. Grazing by dairy cattle on Peat I caused additional N2O production to reach 81 kg N ha-1 yr-1. The sub soil (20–40 cm) contributed 25 to 40% of the total N2O production in the 0–40 cm layer. The N2O production:denitrification ratio was on average about 1 in the top soil and 2 in the sub soil indicating that N2O production through nitrification was important. Experiments showed that when ratios were larger than l, nitrification was the major source of N2O. In conclusion, N2O production is a significant N loss mechanism in grassland on peat soil with nitrification as an important N2O producing process.  相似文献   

19.
In order to understand the role of nitrification and denitrification in the accumulation of nitrous oxide (N2O) in the hypolimnetic water of brackish Lake Nakaumi, the effects of dissolved oxygen (DO) concentration on these activities were investigated by incubation experiments. N2O was produced during the oxidation of NH4 + to NO2 in nitrification and during the reduction of NO3 to N2 in denitrification. N2O-producing activity by nitrification (N2ON) increased markedly with decreasing concentrations of DO. Low DO (10%–30% saturation) induced high N2ON. In contrast to nitrification, N2O-producing activity by denitrification (N2OD) decreased with decreasing concentrations of DO. Little N2O was accumulated during denitrification under low-level conditions of DO (10%–30%), because of further reduction of N2O to N2. It can therefore be assumed that N2O produced as the by-product of nitrification is concurrently reduced to N2 by denitrification under low-DO conditions. This would result in no substantial accumulation of N2O during active nitrification in the hypolimnetic water of Lake Nakaumi. Received: July 6, 2001 / Accepted: December 10, 2001  相似文献   

20.
Denitrification by Chromobacterium violaceum   总被引:2,自引:0,他引:2       下载免费PDF全文
One host (Rana catesbiana)-associated and two free-living mesophilic strains of bacteria with violet pigmentation and biochemical characteristics of Chromobacterium violaceum were isolated from freshwater habitats. Cells of each freshly isolated strain and of strain ATCC 12472 (the neotype strain) grew anaerobically with glucose as the sole carbon and energy source. The major fermentation products of cells grown in Trypticase soy broth (BBL Microbiology Systems, Cockeysville, Md.) supplemented with glucose included acetate, small amounts of propionate, lactate, and pyruvate. The final cell yield and culture growth rate of each strain cultured anaerobically in this medium increased approximately twofold with the addition of 2 mM NaNO3. Final growth yields increased in direct proportion to the quantity of added NaNO3 over the range of 0.5 to 5 mM. Each strain reduced NO3, producing NO2, NO, and N2O. NO2 accumulated transiently. With 2 mM NaNO3 in the medium, N2O made up 85 to 98% of the N product recovered with each strain. N-oxides were recovered in the same quantity and distribution whether 0.01 atm (ca. 1 kPa) of C2H2 (added to block N2O reduction) was present or not. Neither N2 production nor gas accumulation was detected during NO3 reduction by growing cells. Cell growth in media containing 0.5 to 5 mM NaNO2 in lieu of NaNO3 was delayed, and although N2O was produced by the end of growth, NO2 -containing media did not support growth to an extent greater than did medium lacking NO3 or NO2. The data indicate that C. violaceum cells ferment glucose or denitrify, terminating denitrification with the production of N2O, and that NO2 reduction to N2O is not coupled to growth but may serve as a detoxification mechanism. No strain detectably fixed N2 (reduced C2H2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号