首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The fluorescent potentiometric indicator diS–C3-(5) has been used to investigate changes in membrane potential due to assembly of the C5b-9 membrane attack complex of the complement system. EAC1-7 human red blood cells and resealed erythrocyte ghosts—bearing membrane-assembled C5b67 complexes—were generated by immune activation in C8-deficient human serum. Studies performed with these cellular intermediates revealed that the membrane potential of EAC1-7 red cells and ghosts is unchanged from control red cells (–7 mV) and ghosts (0 mV), respectively. Addition of complement proteins C8 and C9 to EAC1-7 red cells results in a dose-dependent depolarization of membrane potential which precedes hemolysis. This prelytic depolarization of membrane potential—and the consequent onset of hemolysis—is accelerated by raising external [K+], suggesting that the diffusional equilibration of transmembrane cation gradients is rate limiting to the cytolytic event. In the case of EAC1-7 resealed ghosts suspended at either high external [K+] or [Na+], no change in membrane potential (from 0 mV) could be detected after C8/C9 additions. When the membrane potential of the EAC1-7 ghost was displaced from 0 mV by selectively increasing the K+ conductance with valinomycin, a dose-dependent depolarization of the membrane was observed upon addition of C8 and C9. In these experiments, lytic breakdown of the ghost membranes was <5%. Conclusions derived from this study include: (i) measured prelytic depolarization of the red cell Donnan potential directly confirms the colloid-osmotic theory of immune cytolysis. (ii) The diffusional transmenbrane equilibration of Na+ and K+ through the C5b-9 pore results in a dose-dependent depolarization of the membrane potential (E m ) which appears to be rate-limiting to cytolytic rupture of the target erythrocyte. (iii) Enhanced immune hemolysis observed in high K+ media cannot be attributed to cation-selective conductance across the C5b-9 pore, and is probably related to the nearequilibrium condition of potassium-containing red cells when suspended at high external K+. These experiments demonstrate that carbocyanine dye fluorescent indicators can be used to monitor electrochemical changes arising from immune damage to the plasma membrane under both cytolytic and noncytolytic conditions. Potential application of this method to the detection of sublytic pathophysiological changes in the plasma membrane of complement-damaged cells are discussed.  相似文献   

2.
This study focuses on the effects of K+ depolarization on neurite elongation of identified Helisoma neurons isolated into culture. Application of K+ to the external medium caused a dose-dependent suppression of neurite elongation. Lower concentrations of K+ were associated with a slowing in the rate of neurite elongation, whereas higher concentrations produced neurite retraction. Surprisingly, the effects of K+ depolarization were transient, and neurite elongation rates recovered towards control levels within 90 min even though the neurons remained in high-K+ solution. Identified neurons differed in the magnitude of their response to K+ depolarization; neurite elongation of buccal neuron B4 was inhibited at 5 mM K+, but elongation in B5 and B19 was not affected until concentrations of 25 mM. Electrophysiologically, K+ application evoked a brief period (5–10 s) of action potential activity that was followed by a steady-state membrane depolarization lasting 2 h or more. The changes in neurite elongation induced by K+ depolarization occurred in isolated growth cones severed from their neurites and were blocked by application of calcium antagonists. Intracellular free Ca2+ levels in growth cones of B4 and B19 increased and then decreased during the 90-min depolarization, corresponding to the changes in elongation. B4 and B19 showed differences in the magnitude, time course, and spatial distribution of the Ca2+ change during depolarization, reflecting their different sensitivities to depolarization.  相似文献   

3.
Recently we introduced a fluorescent probe technique that makes possible to convert changes of equilibrium fluorescence spectra of 3,3’-dipropylthiadicarbocyanine, diS-C3(3), measured in yeast cell suspensions under defined conditions into underlying membrane potential differences, scaled in millivolts (Plasek et al. in J Bioenerg Biomembr 44: 559–569, 2012). The results presented in this paper disclose measurements of real early changes of plasma membrane potential induced by the increase of extracellular K+, Na+ and H+ concentration in S. cerevisiae with and without added glucose as energy source. Whereas the wild type and the ?tok1 mutant cells exhibited similar depolarization curves, mutant cells lacking the two Trk1,2 potassium transporters revealed a significantly decreased membrane depolarization by K+, particularly at lower extracellular potassium concentration [K+]out. In the absence of external energy source plasma membrane depolarization by K+ was almost linear. In the presence of glucose the depolarization curves exhibited an exponential character with increasing [K+]out. The plasma membrane depolarization by Na+ was independent from the presence of Trk1,2 transporters. Contrary to K+, Na+ depolarized the plasma membrane stronger in the presence of glucose than in its absence. The pH induced depolarization exhibited a fairly linear relationship between the membrane potential and the pHo of cell suspensions, both in the wild type and the Δtrk1,2 mutant strains, when cells were energized by glucose. In the absence of glucose the depolarization curves showed a biphasic character with enhanced depolarization at lower pHo values.  相似文献   

4.
In the previous paper, we showed that the K+ channels of the mouse neuroblastoma cell (clone N-18) are closed at low concentration of external K+ ([K+]0) including the physiological concentration for the cells. In the present study, the origin of the resting membrane potential of N-18 cells has been examined. (1) The resting membrane potential of N-18 cells was depolarized by increasing concentration of the polyvalent cations (La3+, Fe3+, Co2+, Ca2+, Sr2+, Mg2+) and by decreasing the pH of the medium. The input membrane resistance was slightly increased during the depolarization. The depolarization was not explained in terms of the diffusion of the cations across the membrane, since the trivalent cations of greater ionic size were effective at much lower concentrations than the divalent cations. The results obtained from the measurements of 86Rb efflux suggested that the depolarization cannot be explained in terms of blocking of the K+ channels by the cations. (2) An increase in Ca2+ concentration from 0.3 to 1.8 mM induced depolarization of about 10 mV at low [K+]0 where the K+ channels are closed, but did not induce any depolarization at high [K+]0 where the channels are open. (3) In order to estimate the changes in the zeta-potential, the electrophoretic mobility of N-18 cells was measured under various conditions. There was a close correlation between the changes in the zeta-potential and those in the membrane potential in response to the polyvalent cations and proton. On the other hand, an increase in K+-concentration in the medium, which induced a large depolarization in the cells, did not affect the zeta-potential. (4) The results obtained were explained by an electrical circuit model for the membranes of N-18 cells. In this model, an electrical circuit for the membrane part carrying no selective ionic channels, in which changes in the surface potential directly affect the transmembrane potential, is connected in parallel to the usual circuit model representing selective ionic channel systems. It was concluded that the surface potential contributes significantly to the resting membrane potential of N-18 cells at low [K+]0 where the K+ channels are closed.  相似文献   

5.
We report here on an experimental system that utilizes ion-selective microelectrodes to measure the electrochemical potential gradients for H+ and K+ ions within the unstirred layer near the root surface of both intact 4-day-old corn seedlings and corn root segments. Analysis of the steady state H+ and K+ electrochemical potential gradients provided a simultaneous measure of the fluxes crossing a localized region of the root surface. Net K+ influx values obtained by this method were compared with unidirectional K+ (86Rb+) influx kinetic data; at any particular K+ concentration, similar values were obtained by either technique. The ionspecific microelectrode system was then used to investigate the association between net H+ efflux and net K+ influx. Although the computed H+:K+ stoichiometry is dependent upon the choice of diffusion coefficients, the values obtained were extremely variable, and net K+ influx rarely appeared to be charge-balanced by H+ efflux. In contrast to earlier studies, we found the cortical membrane potential to be highly K+ sensitive within the micromolar K+ concentration range. Simultaneous measurements of membrane potential and K+ influx, as a function of K+ concentration, revealed similar Km values for the depolarization of the potential (Km 6-9 micromolar K+) and net K+ influx (Km 4-7 micromolar K+). These data suggest that K+ may enter corn roots via a K+-H+ cotransport system rather than a K+/H+ antiporter.  相似文献   

6.
Spectrofluorimetric measurements were conducted to quantify, in real-time, membrane permeability changes resulting from the treatment of Sf9 insect cells (Spodoptera frugiperda, Lepidoptera) with different Bacillus thuringiensis Cry insecticidal proteins. Coumarin-derived CD222 and Merocyanin-540 probes were respectively used to monitor extracellular K+ and membrane potential variations upon Sf9 cells incubation with Cry toxins. Our results establish that Cry1C induces, after a delay, the depolarization of the cell membrane and the full depletion of intracellular K+. These changes were not observed upon Sf9 cells treated with Cry1A family toxins. Both the rate of the K+ efflux and the delay before its onset were dependent on toxin concentration. Both parameters were sensitive to temperature but only the delay was affected by pH. Cry1C-induced K+ efflux was inhibited by lanthanum ions in a dose-dependent manner. This study provides the first kinetic and quantitative characterization of the ion fluxes through the channels formed by a Cry toxin in the plasma membrane of a susceptible insect cell line. Received: 4 October 1999/Revised: 21 December 1999  相似文献   

7.
A chimeric CaHAK1–LeHAK5 transporter with only 15 amino acids of CaHAK1 in the N-terminus mediates high-affinity K+ uptake in yeast cells. Kinetic and expression analyses strongly suggest that LeHAK5 mediates a significant proportion of the high-affinity K+ uptake shown by K+-starved tomato (Solanum lycopersicum) plants. The development of high-affinity K+ uptake, putatively mediated by LeHAK5, was correlated with increased LeHAK5 mRNA levels and a more negative electrical potential difference across the plasma membrane of root epidermal and cortical cells. However, this increase in high-affinity K+ uptake was not correlated with the root K+ content. Thus, (i) growth conditions that result in a hyperpolarized root plasma membrane potential, such as K+ starvation or growth in the presence of NH4 +, but which do not decrease the K+ content, lead to increased LeHAK5 expression; (ii) the presence of NaCl in the growth solution, which prevents the hyperpolarization induced by K+ starvation, also prevents LeHAK5 expression. Moreover, once the gene is induced, depolarization of the plasma membrane potential then produces a decrease in the LeHAK5 mRNA. On the basis of these results, we propose that the plant membrane electrical potential plays a role in the regulation of the expression of this gene encoding a high-affinity K+ transporter.  相似文献   

8.
The membrane potential of guinea pig polymorphonuclear leukocytes has been assessed with two indirect probes, tetraphenylphosphonium (TPP+) and 3,3′-dipropylthiadicarbocyanine (diS-C3-(5)). The change in TPP+ concentration in the medium was measured with a TPP+-selective electrode. By monitoring differences in accumulation of TPP+ in media containing low and high potassium concentrations, a resting potential of −58.3 mV was calculated. This potential is composed of a diffusion potential due to the gradient of potassium, established by the Na+, K+ pump, and an electrogenic potential. The chemotactic peptide fMet-Leu-Phe elicits a rapid efflux of accumulated TPP+ (indicative of depolarization) followed by its reaccumulation (indicative of repolarization). In contrast, stimulation with concanavalin A results in a rapid and sustained depolarization without a subsequent repolarization. The results obtained with TPP+ and diS-C3-(5) were comparable. Such changes in membrane potential were observed in the absence of extracellular sodium, indicating that an inward movement of sodium is not responsible for the depolarization. Increasing potassium levels, which lead to membrane depolarization, had no effect on the oxidative metabolism in nonstimulated or in fMet-Leu-Phe-stimulated cells. Therefore, it seems unlikely that membrane depolarization per se is the immediate stimulus for the respiratory burst.  相似文献   

9.
We tested the hypothesis that membrane depolarization may initiate oxidant generation in the endothelial cell. Depolarization was produced in bovine pulmonary arterial endothelial cells (BPAEC) in monolayer culture with varying external K+, or with glyburide (10 μM), tetraethylammonium (TEA, 10 mM), gramicidin (1 μM), or nigericin (2 μM). Evaluation of bisoxonol fluorescence of BPAEC indicated concentration-dependent depolarization by high K+ (2% change in fluorescence/mV change in membrane potential in the 5.9–48 mM range of K+) and essentially complete depolarization with glyburide. Generation of oxidants was assessed with o-phenylenediamine dihydrochloride (o-PD) oxidation in the presence of horseradish peroxidase (HRP). There was a time-dependent increase in o-PD oxidation with 24 mM K+, nigericin, and gramicidin over 2 hours compared with control. In 1 hour o-PD oxidation increased 2.8-fold for 24 mM and 3.7-fold for 48 mM K+ compared with control. Catalase reduced 24 mM K+-induced o-PD oxidation by 50%, while Cu/Zn-superoxide dismutase (SOD) abolished the increase. Oxidation of o-PD was reduced by 57% in the absence of HRP in the system. With K+ channel blockade, o-PD oxidation increased 3.8-fold with glyburide and 4.6-fold with TEA compared with control. These data indicate formation of H2O2 and possibly other oxidants with depolarization and suggest involvement of K+-channels in this process. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.  相似文献   

11.
Summary The apical surface of the retinal pigment epithelium (RPE) faces the neural retina whereas its basal surface faces the choroid. Taurine, which is necessary for normal vision, is released from the retina following light exposure and is actively transported from retina to choroid by the RPE. In these experiments, we have studied the effects of taurine on the electrical properties of the isolated RPE of the bullfrog, with a particular focus on the effects of taurine on the apical Na+–K+ pump.Acute exposure of the apical, but not basal, membrane of the RPE to taurine decreased the normally apical positive transepithelial potential (TEP). This TEP decrease was generated by a depolarization of the RPE apical membrane and did not occur when the apical bath contained sodium-free medium. With continued taurine exposure, the initial TEP decrease was sometimes followed by a recovery of the TEP toward baseline. This recovery was abolished by strophanthidin or ouabain, indicating involvement of the apical Na+–K+ pump.To further explore the effects of taurine on the Na+–K+ pump, barium was used to block apical K+ conductance and unmask a stimulation of the pump that is produced by increasing apical [K+] 0 . Under these conditions, increasing [K+] 0 hyperpolarized the apical membrane and increased TEP. Taurine reversibly doubled these responses, but did not change total epithelial resistance or the ratio of apical-to-basal membrane resistance, and ouabain abolished these responses.Collectively, these findings indicate the presence of an electrogenic Na+/taurine cotransport mechanism in the apical membrane of the bullfrog RPE. They also provide direct evidence that taurine produces a sodium-dependent increase in electrogenic pumping by the apical Na+–K+ pump.  相似文献   

12.
The K+-agitated (Kag) mutant of Paramecium caudatum shows prolonged backward swimming in K+-rich solution. To understand the regulation mechanisms of the ciliary motility in P. caudatum, we examined the membrane electrical properties of the Kag mutant. The duration of the backward swimming of the Kag in K+-rich solution was about 10 times longer than that of the wild type. In response to an injection of the outward current, the wild type produced an initial action potential and a subsequent membrane depolarization due to I-R potential drop, while the Kag exhibited repetitive action potentials during the depolarization. Under voltage-clamp conditions, the depolarization-activated transient inward current exhibited by the Kag was slightly smaller than that exhibited by the wild type. In response to an application of K+-rich solution, both the wild type and the Kag exhibited a depolarizing afterpotential representing the activation of the K+-induced Ca2+ conductance. The inactivation time course of the K+-induced Ca2+ conductance of Kag was about 10 times longer than that of the wild type. This difference corresponds well with the difference in behavioral responses between Kag and wild type to K+-rich solution. We conclude that the overreaction of the Kag mutant to the K+-rich solution is caused by slowing down of the inactivation of the K+-induced Ca2+ conductance.  相似文献   

13.
Summary The effects of 253.7 nm ultraviolet (UV) radiation on the membrane properties ofChara corallina have been studied. UV irradiation caused depolarization of the membrane potential (p.d.) and a decrease in membrane resistance. These effects were largely reversible with steady values being obtained within 40 minutes after the UV was turned off. The effects on ionic fluxes of Na+, K+ and Cl have also been studied using radioactive tracer techniques. The influxes were unchanged by irradiation. The chloride efflux was increased sevenfold during the irradiation period but recovered to the pre-irradiation value within 30 minutes after the irradiation period. The potassium efflux was also increased and reached a maximum 10 minutes after irradiation. The resting potential and the average depolarized p.d. reached during irradiation were in good agreement with those calculated from permeability coefficients indicated by the observed passive fluxes, using the Goldman equation for p.d. However, the plasmalemma resistance and its change due to irradiation did not match the values calculated from the same permeability coefficients used to estimate p.d. This disagreement, and an apparent imbalance in the charge transferred across the resting or irradiated plasmalemma, suggest the participation of another ion species as well as K+, Na+ and Cl.  相似文献   

14.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

15.
The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3′-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be −57 ± 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 μM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids.  相似文献   

16.
An electrical potential having a value of ?35 mV (SD = 7.4) is recorded upon penetration of the ventral surface of adult male Schistosoma mansoni with a microelectrode. Histological studies using horseradish peroxidase as a marker injected iontophoretically through the recording electrode indicate that this potential originates in the tegumental epithelium. Recordings from animals with contractile activity showed spontaneous nonovershooting depolarizations with durations of 20 to 100 msec and amplitudes between 5 and 15 mV. Slow-wave depolarizations are also observed and are most frequent in animals showing only slight movement. The tegumental membrane potential appears to be dependent primarily on the K+ gradient across the surface since a 10-fold increase in external K+ causes a 30-mV change in the potential. Altering the external concentration of Cl? has little effect on the tegumental potential, but lowering the external Na+ concentration to 37 mM causes a 10-mV depolarization. Praziquantel (PZ) has little initial effect on the tegumental membrane potential. A slow depolarization does occur, however, which reaches a significant level about 10 min after PZ (1 μM). Carbachol and dopamine are without significant effects on the tegumental membrane potential.  相似文献   

17.
The effect of the membrane impermeant sulfhydryl group (SH) reagent, p-chloromercuribenzenesulfonic acid (p-CMBS), on electrical membrane transport properties of the giant alga, Chara corallina, was determined. In an external medium with a high K+ concentration (5 mM) cells typically exhibited stable membrane potentials close to the K+equilibrium potential. The steady-state current-voltage (I-V) relation could be dissected into two distinct components: an almost linear ohmic leak current and a voltage-dependent K+ current. Adding 0.5 mM p-CMBS to the external medium resulted in an immediate, short depolarization transient (resembling the time course of an action potential) and was associated with a slow down of the cytoplasmic streaming velocity. The depolarization, as well as the streaming inhibition, could be abolished by pretreating cells with the Ca2+ channel inhibitor, LaCl3. This suggests that the depolarization transient reflected a p-CMBS induced Ca2+ influx, a scenario known to trigger membrane excitation and slow down of cytoplasmic streaming. From the I-V analysis it appeared that p-CMBS also caused a reversible inhibition of two additional transmembrane currents: (1) a reduction of a leak current and (2) a modification of the deactivation kinetics of the voltage-dependent K+ channels. From the I-V difference analysis, the inhibited leak current was identified as a K+ current, because the reversal potential was close to the estimated K+ equilibrium potential. Control experiments have furthermore shown that the mercapto reagent, dithiothreitol, partly reversed the effect of p-CMBS. This strengthens the view that the action of the mercurial is related to a specific and direct modification of SH groups. The p-CMBS-evoked inhibition of K+ currents was not abolished by the LaCl3 pretreatment, which suggests that the effect of the SH reagent is not induced indirectly by p-CMBS-triggered Ca2+ influx. Therefore, it is suggested that the mercurial interacts direcly with the K+ transport protein.  相似文献   

18.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

19.
45Ca2+ fluxes across the plasma membrane of zygotes of the fucoid alga, Pelvetia fastagiata (J. Ag.) De Toni, were studied in artificial sea waters of various potassium concentrations. Except for two cases, hyperpolarization of the cell membrane (with low [K+]) increases, and depolarization (with high [K+]) decreases the influx of Ca2+ over the range of [K+] studied (1–100 mM). The fractional increases of influx during hyperpolarization are close to the fractional increases in membrane potential but the decreases during depolarization are much smaller than those in membrane potential. In two anomalous cases, the influxes of 45Ca2+ at a potassium concentration of 30 mM were about 20% higher than the control value instead of being 10% lower.The effluxes of 45Ca2+ are increased by both hyperpolarization and by depolarization. On balance (and excepting the two anomalous cases) the net result of hyperpolarization should be to increase and that of depolarization to decrease intracellular [Ca2+].  相似文献   

20.
The apoplastic pH of guard cells probably acidifies in response to light, since light induces proton extrusion by both guard cells and epidermal leaf cells. From the data presented here, it is concluded that these apoplastic pH changes will affect K+ fluxes in guard cells of Arabidopsis thaliana (L.) Heynh. Guard cells of this species were impaled with double-barrelled microelectrodes, to measure the membrane potential (Em) and the plasma-membrane conductance. Guard cells were found to exhibit two states with respect to their Em, a depolarized and a hyperpolarized state. Apoplastic acidification depolarized Em in both states, though the origin of the depolarization differed for each state. In the depolarized state, the change in Em was the result of a combined pH effect on instantaneously activating conductances and on the slow outward rectifying K+ channel (s-ORC). At a more acidic apoplastic pH, the current through instantaneously activated conductances became more inwardly directed, while the maximum conductance of s-ORC decreased. The effect on s-ORC was accompanied by an acceleration of activation and deactivation of the channel. Experiments with acid loading of guard cells indicated that the effect on s-ORC was due to a lowered intracellular pH, caused by apoplastic acidification. In the hyperpolarized state, the pH-induced depolarization was due to a direct effect of the apoplastic pH on the inward rectifying K+ channel. Acidification shifted the threshold potential of the channel to more positive values. This effect was accompanied by a decrease in activation times and an increase of deactivation times, of the channel. From the changes in Em and membrane conductance, the expected effect of acidification on K+ fluxes was calculated. It was concluded that apoplastic acidification will increase the K+-efflux in the depolarized state and reduce the K+-influx in the hyperpolarized state. Received: 28 April 1997 / Accepted: 10 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号