首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conspicuous cyclic changes in population density characterize many populations of small northern rodents. The extreme crashes in individual number are expected to reduce the amount of genetic variation within a population during the crash phases of the population cycle. By long-term monitoring of a bank vole (Myodes glareolus) population, we show that despite the substantial and repetitive crashes in the population size, high heterozygosity is maintained throughout the population cycle. The striking population density fluctuation in fact only slightly reduced the allelic richness of the population during the crash phases. Effective population sizes of vole populations remained also relatively high even during the crash phases. We further evaluated potential mechanisms contributing to the genetic diversity of the population and found that the peak phases are characterized by both a change in spatial pattern of individuals and a rapid accession of new alleles probably due to migration. We propose that these events act together in maintaining the high genetic diversity within cyclical populations.  相似文献   

2.
In highly fluctuating populations with complex social systems, genetic patterns are likely to vary in space and time due to demographic and behavioural processes. Cyclic rodents are extreme examples of demographically instable populations that often exhibit strong social organization. In such populations, kin structure and spacing behaviour may vary with density fluctuations and impact both the composition and spatial structure of genetic diversity. In this study, we analysed the multiannual genetic structure of a cyclic rodent, Microtus arvalis, using a sample of 875 individuals trapped over three complete cycles (from 1999 to 2007) and genotyped at 10 microsatellite loci. We tested the predictions that genetic diversity and gene flow intensity vary with density fluctuations. We found evidences for both spatial scale‐dependant variations in genetic diversity and higher gene flow during high density. Moreover, investigation of sex‐specific relatedness patterns revealed that, although dispersal is biased toward males in this species, distances moved by both sexes were lengthened during high density. Altogether, these results suggest that an increase in migration with density allows to restore the local loss of genetic diversity occurring during low density. We then postulate that this change in migration results from local competition, which enhances female colonization of empty spaces and male dispersal among colonies.  相似文献   

3.
Genetic structure can be strongly affected by landscape features and variation through time and space of demographic parameters such as population size and migration rate. The fossorial water vole (Arvicola terrestris) is a cyclic species characterized by large demographic fluctuations over short periods of time. The outbreaks do not occur everywhere at the same time but spread as a wave at a regional scale. This leads to a pattern of large areas (i.e. some hundreds of km2), each with different vole abundances, at any given time. Here, we describe the abundance and genetic structures in populations of the fossorial water vole. We use the data to try to understand how landscape and demographic features act to shape the genetic structure. The spatial variability of vole abundance was assessed from surface indices, collected in spring 2002 (April) in eastern central France. Genetic variability was analysed using eight microsatellite loci at 23 localities sampled between October 2001 and April 2002. We found some congruence between abundance and genetic structures. At a regional scale, the genetic disruptions were associated with both sharp relief and transition between an area of low abundance and another of high abundance. At a local scale, we observed a variation of the isolation-by-distance pattern according to the abundance level of vole populations. From these results we suggest that the dispersal pattern in cyclic rodent populations varies throughout the demographic cycle.  相似文献   

4.
Spatial structure in the distribution of pathogen infection can influence both epidemiology and host-parasite coevolutionary processes. It may result from the spatial heterogeneity of intrinsic and extrinsic factors, or from the local population dynamics of hosts and parasites. In this study, we investigated the effects of landscape, host dispersal and demography (population abundance and phase of the fluctuation) on the distribution of a gastro-intestinal nematode Trichuris arvicolae in the fossorial water vole Arvicola terrestris sherman. This rodent exhibits outbreaks occurring regularly in Franche-Comté (France). Thirteen out-of-phase populations were studied in autumn 2003. They exhibited highly different T. arvicolae prevalences. The heterogeneity in prevalences was not explained by population structure, landscape or vole abundance, but by the phase of the vole population fluctuations. Populations at the end of the high density phase showed null prevalence whereas populations in increase or outbreak phases exhibited higher prevalences. Population genetic analyses based on microsatellites revealed significant differentiation between vole populations, and higher dispersal rates of young voles compared with old ones. These younger individuals were also infected more frequently than older voles. This suggested a role of host dispersal in the distribution of T. arvicolae. However, there was a strong discrepancy between the spatial patterns of prevalence and of host genetics or demographic phase. Genetic differentiation and differences in demographic phase exhibited significant spatial autocorrelations whereas prevalence did not. We concluded that the distribution of T. arvicolae is influenced by vole dispersal, although this effect might be overwhelmed by local adaptation processes or environmental conditions.  相似文献   

5.
Host-pathogen interactions are of particular interest in studies of the interplay between population dynamics and natural selection. The major histocompatibility complex (MHC) genes of demographically fluctuating species are highly suitable markers for such studies, because they are involved in initiating the immune response against pathogens and display a high level of adaptive genetic variation. We investigated whether two MHC class II genes (DQA1, DRB) were subjected to contemporary selection during increases in the density of fossorial water vole (Arvicola terrestris) populations, by comparing the neutral genetic structure of seven populations with that estimated from MHC genes. Tests for heterozygosity excess indicated that DQA1 was subject to intense balancing selection. No such selection operated on neutral markers. This pattern of selection became more marked with increasing abundance. In the low-abundance phase, when populations were geographically isolated, both overall differentiation and isolation-by-distance were more marked for MHC genes than for neutral markers. Model-based simulations identified DQA1 as an outlier (i.e. under selection) in a single population, suggesting the action of local selection in fragmented populations. The differences between MHC and neutral markers gradually disappeared with increasing effective migration between sites. In the high-abundance year, DQA1 displayed significantly lower levels of overall differentiation than the neutral markers. This gene therefore displayed stronger homogenization than observed under drift and migration alone. The observed signs of selection were much weaker for DRB. Spatial and temporal fluctuations in parasite pressure and locus-specific selection are probably the most plausible mechanisms underlying the observed changes in selection pattern during the demographic cycle.  相似文献   

6.
Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase F ST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. F ST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.  相似文献   

7.
Aims The dispersal of pollen and seeds is spatially restricted and may vary among plant populations because of varying biotic interactions, population histories or abiotic conditions. Because gene dispersal is spatially restricted, it will eventually result in the development of spatial genetic structure (SGS), which in turn can allow insights into gene dispersal processes. Here, we assessed the effect of habitat characteristics like population density and community structure on small-scale SGS and estimate historical gene dispersal at different spatial scales.Methods In a set of 12 populations of the subtropical understory shrub Ardisia crenata, we assessed genetic variation at 7 microsatellite loci within and among populations. We investigated small-scale genetic structure with spatial genetic autocorrelation statistics and heterogeneity tests and estimated gene dispersal distances based on population differentiation and on within-population SGS. SGS was related to habitat characteristics by multiple regression.Important findings The populations showed high genetic diversity (H e = 0.64) within populations and rather strong genetic differentiation (F ′ ST = 0.208) among populations, following an isolation-by-distance pattern, which suggests that populations are in gene flow–drift equilibrium. Significant SGS was present within populations (mean Sp = 0.027). Population density and species diversity had a joint effect on SGS with low population density and high species diversity leading to stronger small-scale SGS. Estimates of historical gene dispersal from between-population differentiation and from within-population SGS resulted in similar values between 4.8 and 22.9 m. The results indicate that local-ranged pollen dispersal and inefficient long-distance seed dispersal, both affected by population density and species diversity, contributed to the genetic population structure of the species. We suggest that SGS in shrubs is more similar to that of herbs than to trees and that in communities with high species diversity gene flow is more restricted than at low species diversity. This may represent a process that retards the development of a positive species diversity–genetic diversity relationship.  相似文献   

8.
Despite extensive research into the mechanisms underlying population cyclicity, we have little understanding of the impacts of numerical fluctuations on the genetic variation of cycling populations. Thus, the potential implications of natural and anthropogenically‐driven variation in population cycle dynamics on the diversity and evolutionary potential of cyclic populations is unclear. Here, we use Canada lynx Lynx canadensis matrix population models, set up in a linear stepping‐stone, to generate demographic replicates of biologically realistic cycling populations. Overall, increasing cycle amplitude predictably reduced genetic diversity and increased genetic differentiation, with cyclic effects increased by population synchrony. Modest dispersal rates (1–3% of the population) between high and low amplitude cyclic populations did not diminish these effects suggesting that spatial variation in cyclic amplitude should be reflected in patterns of genetic diversity and differentiation at these rates. At high dispersal rates (6%) groups containing only high amplitude cyclic populations had higher diversity and lower differentiation than those mixed with low amplitude cyclic populations. Negative density‐dependent dispersal did not impact genetic diversity, but did homogenize populations by reducing differentiation and patterns of isolation by distance. Surprisingly, temporal changes in diversity and differentiation throughout a cycle were not always consistent with population size. In particular, negative density‐dependent dispersal simultaneously decreased differences in genetic diversity while increasing differences in genetic differentiation between numerical peaks and nadirs. Combined, our findings suggest demographic changes at fine temporal scales can impact genetic variation of interacting populations and provide testable predictions relating population cyclicty to genetic variation. Further, our results suggest that including realistic demographic and dispersal parameters in population genetic models and using information from temporal changes in genetic variation could help to discern complex demographic scenarios and illuminate population dynamics at fine temporal scales.  相似文献   

9.
In order to gain a better understanding of the consequences of population density cycles and landscape structure for the genetic composition in time and space of vole populations, we analyzed the multiannual genetic structure of the two numerically dominant, sympatric small rodent species of northernmost Fennoscandia. Red voles Myodes rutilus and grey-sided voles M. rufocanus were trapped in the subarctic birch forest along three fjords over five years. Along each fjord, there were four or five altitudinal transects each with five trapping stations. Spring and fall population densities were estimated from mark–recapture data. Grey-sided voles exhibited higher amplitude density fluctuations than red voles. Polymorphism at eight or nine microsatellite loci, determined in 1228 voles, was used to estimate local genetic diversity and differentiation among samples. Genetic diversity was higher in grey-sided voles than in red voles. Spring densities had no effect on local genetic diversity or on differentiation. The amplitude of density fluctuations and the extent of favorable habitat (sub-arctic birch forest) surrounding each site had a positive effect on genetic diversity, and the amplitude of density fluctuations had a negative effect on differentiation in red voles, for which fluctuating populations were compared with more stable populations. The harmonic mean of densities, reflecting average population sizes, had a negative effect on genetic diversity in red voles, but a positive effect in grey-sided voles, for which only fluctuating populations were compared. No other effects were significant for grey-sided voles. A temporal assignment test showed that the spatial structure was more stable in time for populations with more stable population dynamics. Altogether our results suggest that high amplitude density fluctuations lead to more gene flow and higher genetic diversity in vole populations.  相似文献   

10.
Many populations, especially in insects, fluctuate in size, and periods of particularly low population size can have strong effects on genetic variation. Effects of demographic bottlenecks on genetic diversity of single populations are widely documented. Effects of bottlenecks on genetic structure among multiple interconnected populations are less studied, as are genetic changes across multiple cycles of demographic collapse and recovery. We take advantage of a long‐term data set comprising demographic, genetic and movement data from a network of populations of the butterfly, Parnassius smintheus, to examine the effects of fluctuating population size on spatial genetic structure. We build on a previous study that documented increased genetic differentiation and loss of spatial genetic patterns (isolation by distance and by intervening forest cover) after a network‐wide bottleneck event. Here, we show that genetic differentiation was reduced again and spatial patterns returned to the system extremely rapidly, within three years (i.e. generations). We also show that a second bottleneck had similar effects to the first, increasing differentiation and erasing spatial patterns. Thus, bottlenecks consistently drive random divergence of allele frequencies among populations in this system, but these effects are rapidly countered by gene flow during demographic recovery. Our results reveal a system in which the relative influence of genetic drift and gene flow continually shift as populations fluctuate in size, leading to cyclic changes in genetic structure. Our results also suggest caution in the interpretation of patterns of spatial genetic structure, and its association with landscape variables, when measured at only a single point in time.  相似文献   

11.
Habitat fragmentation may disrupt original patterns of gene flow and lead to drift-induced differentiation among local population units. Top predators such as the jaguar may be particularly susceptible to this effect, given their low population densities, leading to small effective sizes in local fragments. On the other hand, the jaguar's high dispersal capabilities and relatively long generation time might counteract this process, slowing the effect of drift on local populations over the time frame of decades or centuries. In this study, we have addressed this issue by investigating the genetic structure of jaguars in a recently fragmented Atlantic Forest region, aiming to test whether loss of diversity and differentiation among local populations are detectable, and whether they can be attributed to the recent effect of drift. We used 13 microsatellite loci to characterize the genetic diversity present in four remnant populations, and observed marked differentiation among them, with evidence of recent allelic loss in local areas. Although some migrant and admixed individuals were identified, our results indicate that recent large-scale habitat removal and fragmentation among these areas has been sufficiently strong to promote differentiation induced by drift and loss of alleles at each site. Low estimated effective sizes supported the inference that genetic drift could have caused this effect within a short time frame. These results indicate that jaguars' ability to effectively disperse across the human-dominated landscapes that separate the fragments is currently very limited, and that each fragment contains a small, isolated population that is already suffering from the effects of genetic drift.  相似文献   

12.
西鄂尔多斯特有种四合木种群遗传多样性及遗传分化研究   总被引:14,自引:3,他引:11  
张颖娟  杨持 《生态学报》2001,21(3):506-511
利用垂直板聚丙烯酰胺凝胶电泳技术,对西鄂尔多斯高原特有种四合木(Tetraena mogolica)4个种群遗传多样性和遗传分化进行了初步研究。电泳结果表明,四合木在种和种群水平维持较高的遗传多样性,1多态位点百分率P=60%,等位基因平均数A=1.6,平均期望杂合度He=0.245。4个种群之间遗传分化很小,基因分化系数GST只有0.052,明不同于其它濒危物种。四合木种较高的遗传多样性和极低的种群间分化,说明不同的种群可能有共同的起源,随机遗传漂变和近交衰退不是影响遗传多样性的主要过程。  相似文献   

13.
Theory predicts strong stabilizing selection on warning patterns within species and convergent evolution among species in Müllerian mimicry systems yet Heliconius butterflies exhibit extreme wing pattern diversity. One potential explanation for the evolution of this diversity is that genetic drift occasionally allows novel warning patterns to reach the frequency threshold at which they gain protection. This idea is controversial, however, because Heliconius butterflies are unlikely to experience pronounced population subdivision and local genetic drift. To examine the fine-scale population genetic structure of Heliconius butterflies we genotyped 316 individuals from eight Costa Rican Heliconius species with 1428 AFLP markers. Six species exhibited evidence of population subdivision and/or isolation by distance indicating genetic differentiation among populations. Across species, variation in the extent of local genetic drift correlated with the roles different species have played in generating pattern diversity: species that originally generated the diversity of warning patterns exhibited striking population subdivision while species that later radiated onto these patterns had intermediate levels of genetic diversity and less genetic differentiation among populations. These data reveal that Heliconius butterflies possess the coarse population genetic structure necessary for local populations to experience pronounced genetic drift which, in turn, could explain the origin of mimetic diversity.  相似文献   

14.
The genetic structure of brown trout (Salmo trutta) populations inhabiting rivers on the island of Bornholm in the Baltic Sea was studied on a spatial and temporal scale. Low water levels in the rivers during the summer period are assumed to have a significant impact on the persistence of local populations, possibly resulting in a metapopulation structure. Extinctions may, however, also be buffered by a remnant strategy, whereby juveniles escape to river outlets during periods of drought. We compared polymorphism at seven microsatellite DNA loci in contemporary and past samples collected from 1944 to 1997. A principal component analysis, a hierarchical gene diversity analysis and assignment tests showed that the genetic composition of populations was not temporally stable, and that temporal genetic differentiation was much stronger than spatial differentiation. Genetic variability was high and stable over time. Effective population sizes (Ne) and migration rate (m) were estimated using a maximum-likelihood-based implementation of the temporal method. Ne estimates were low (ranging from 8.3 to 22.9) and estimates of m were high (between 0.23 and 0.99), in contrast to other Danish trout populations inhabiting larger and more environmentally stable rivers (Ne between 39.2 and 289.9 and m between 0.01 and 0.09). Thus, the observed spatio-temporal patterns of genetic differentiation can be explained by drift in small persisting populations, where levels of genetic variation are maintained by strong gene flow. However, observations of rivers devoid of trout suggested that population turnover also takes place. We suggest that Bornholm trout represent a metapopulation where the genetic structure primarily reflects strong drift and gene flow, combined with occasional extinction-recolonization events.  相似文献   

15.
I investigated the effects of delayed population growth on the genetic differentiation among populations subjected to local extinction and recolonization, for two different migration functions; (1) a constant migration rate, and (2) a constant number of migrants. A delayed period of population growth reduces the size of the newly founded populations for one or several generations. Whether this increases differentiation among local populations depends on the actual pattern of migration. With a constant migration rate, fewer migrants move into small populations than into large, thus providing ample opportunity for drift to act within a population. A prolonged period of population growth thus makes the conditions for enhanced differentiation between local populations less restrictive and also inflates the actual levels of differentiation. The effect depends on the relative magnitudes of ke, the effective number of colonizers and k, the actual number of colonizers. When there is a constant number of migrants into a population per generation, migration into small populations is increased. This increase of migration in small populations counteracts the effects of genetic drift due to small population size. It increases the rate by which populations approach equilibrium, as small populations are swamped by migrants from larger populations closer to genetic equilibrium, and overall levels of differentiation are thus reduced. I also discuss situations for which the results of this paper are relevant.  相似文献   

16.
Aim Deep‐sea hydrothermal vents are unstable habitats that are both spatially and temporally fragmented. In vent species, a ‘short‐term insurance’ hypothesis would lead us to expect mostly self‐recruitment, limiting the loss of larvae in the deep ocean or water column and increasing genetic differentiation over the time elapsed since colonization. Alternatively, a ‘long‐term insurance’ hypothesis would support the prediction of selection for large‐scale dispersal, to ensure long‐term persistence in these ephemeral habitats. The main goal of this study was to infer the spatial and temporal distribution of genetic diversity of the shrimp Rimicaris exoculata, which forms high‐density local populations on hydrothermal vents along the Mid‐Atlantic ridge. Location Deep‐sea hydrothermal vents along the Mid‐Atlantic Ridge. Methods We used sequences of mitochondrial cytochrome c oxidase subunit I (COI, 710 bp) to assess the spatio‐temporal distribution of genetic diversity across five hydrothermal fields from 36° N to 4° S. Results In contrast to previous results from pioneer studies, very high haplotype diversity was observed in vents across the entire region (i.e. 0.69–0.82), indicating current large effective population size and low drift. The star‐like shape of the network of haplotypes, the lack of spatial genetic structure and the significance of tests reflecting demographic effects, together with the fitting of a population expansion model, all support a recent population expansion. Main conclusions Our results suggest a very recent common history of R. exoculata populations/demes along the Mid‐Atlantic Ridge, derived after a common bottleneck or founder event and followed by a concomitant demographic expansion. This study therefore suggests a large effective population size and/or high dispersal capacity, as well as a possible recent (re)colonization of Mid‐Atlantic hydrothermal vents by R. exoculata.  相似文献   

17.
Population densities of the gray‐sided vole Myodes rufocanus fluctuate greatly within and across years in Japan. Here, to investigate the role of individual dispersal in maintaining population genetic diversity, we examined how genetic diversity varied during fluctuations in density by analyzing eight microsatellite loci in voles sampled three times per year for 5 years, using two fixed trapping grids (approximately 0.5 ha each). At each trapping session, all captured voles at each trapping grid were removed. The STRUCTURE program was used to analyze serially collected samples to examine how population crashes were related to temporal variability, based on local‐scale genetic compositions in each population. In total, 461 and 527 voles were captured at each trapping grid during this study. The number of voles captured during each trapping session (i.e., vole density) varied considerably at both grids. Although patterns in fluctuations were not synchronized between grids, the peak densities were similar. At both grids, the mean allele number recorded at each trapping session was strongly, positively, and nonlinearly correlated with density. STRUCTURE analyses revealed that the proportions of cluster compositions among individuals at each grid differed markedly before and after the crash phase, implying the long‐distance dispersal of voles from remote areas at periods of low density. The present results suggest that, in gray‐sided vole populations, genetic diversity varies with density largely at the local scale; in contrast, genetic variation in a metapopulation is well‐preserved at the regional scale due to the density‐dependent dispersal behaviors of individuals. By influencing the dispersal patterns of individuals, fluctuations in density affect metapopulation structure spatially and temporally, while the levels of genetic diversity are preserved in a metapopulation.  相似文献   

18.
Cyclic or fluctuating populations experience regular periods of low population density. Genetic bottlenecks during these periods could give rise to temporal or spatial genetic differentiation of populations. High levels of movement among increasing populations, however, could ameliorate any differences and could also synchronize the dynamics of geographically separated populations. We use microsatellite markers to investigate the genetic differentiation of four island and one mainland population of western tent caterpillars, Malacosoma californicum pluviale, in two periods of peak or pre-peak density separated by 8 years. Populations showed high levels of genetic variation and little genetic differentiation either temporally between peaks or spatially among sites. Mitochondrial haplotypes were also shared between one island population and one mainland population in the two years studied. An isolation-by-distance analysis showed the FST values of the two geographically closest populations to have the highest level of differentiation in both years. We conclude that high levels of dispersal among populations maintain both synchrony of population dynamics and override potential genetic differentiation that might occur during population troughs. As far we are aware, this is the first time that genetic similarity between temporally separated population outbreaks in insects has been investigated. A review of genetic data for both vertebrate and invertebrate species of cyclic animals shows that a lack of spatial genetic differentiation is typical, and may result from high levels of dispersal associated with fluctuating dynamics.  相似文献   

19.
Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.  相似文献   

20.
Habitat fragmentation can lead to a decline of genetic diversity, a potential risk for the survival of natural populations. Fragmented populations can become highly differentiated due to reduced gene flow and genetic drift. A decline in number of individuals can result in lower reproductive fitness due to inbreeding effects. We investigated genetic variation within and between 11 populations of the rare and endangered plant Silene chlorantha in northeastern Germany to support conservation strategies. Genetic diversity was evaluated using AFLP techniques and the results were correlated to fitness traits. Fitness evaluation in nature and in a common garden approach was conducted. Our analysis revealed population differentiation was high and within population genetic diversity was intermediate. A clear population structure was supported by a Bayesian approach, AMOVA and neighbour-joining analysis. No correlation between genetic and geographic distance was found. Our results indicate that patterns of population differentiation were mainly caused by temporal and/or spatial isolation and genetic drift. The fitness evaluation revealed that pollinator limitation and habitat quality seem, at present, to be more important to reproductive fitness than genetic diversity by itself. Populations of S. chlorantha with low genetic diversity have the potential to increase in individual number if habitat conditions improve. This was detected in a single large population in the investigation area, which was formerly affected by bottleneck effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号