首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nine diterpene lactone amide derivatives 1-9 were synthesized from 6-oxovouacapan-7beta,17beta-lactone, which was obtained from 6alpha,7beta-dihydroxyvouacapan-17beta-oic acid isolated from Pterodon polygalaeflorus Benth., and tested for their activity on photosynthetic electron transport. Amide derivatives 3-5 behaved as electron transport chain inhibitors; they inhibited the photophosphorylation and uncoupled non-cyclic electron transport from water to methylviologen (MV). Furthermore, 4 and 5 enhanced the basal electron rate acting as uncouplers. Compound 6 behaved as an uncoupler; it enhanced the light-activated Mg2+-ATPase and basal electron flow, without affecting the uncoupled non-cyclic electron transport. Compounds 1-2 and 7-9 were less active or inactive. Compounds 3-5 did not affect photosystem I (PSI); they inhibited photosystem II (PSII) from water to 2,6-dichlorophenol indophenol (DCPIP). Compound 4 inhibited PSII from water to silicomolybdate (SiMo), but it had no effect on the reaction from diphenylcarbazide (DPC) to DCPIP indicating that its inhibition site was at the water splitting enzyme complex (OEC). Compounds 3 and 5 inhibited PSII from water to DCPIP without any effect from water to SiMo, therefore they inhibited the acceptor site of PSII. Chlorophyll a fluorescence kinetics confirmed the behaviour of 3-5.  相似文献   

2.
测定了小麦(Triticum aestivum L.)感染小麦条锈病后的光合常数,以及叶绿素含量、类囊体膜光合电子传递速率和光合反应中心D1蛋白的变化.实验显示,条锈病侵染导致感病小麦叶片净光合速率与叶绿素含量降低;抗病小麦经侵染后净光合速率却有恢复过程,叶绿素含量先降后升.此外,感病小麦叶片被侵染后全链电子传递速率受到抑制,PSII电子传递速率的变化与全链电子传递速率的变化趋势相似,但PSI电子传递速率受到的影响较小;抗病小麦小麦叶片被侵染后电子传递速率所受影响较小.同时发现,病程中,感病和抗病小麦PSII的光合反应中心D1蛋白含量变化总是与PSII电子传递速率的变化类似,推测D1蛋白的表达量变化是引起PSII电子传递活性与全链电子传递速率变化的主要因素之一.  相似文献   

3.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

4.
The purpose of this study was to explore how the mitochondrial AOX (alternative oxidase) pathway alleviates photoinhibition in Rumex K-1 leaves. Inhibition of the AOX pathway decreased the initial activity of NADP-malate dehydrogenase (EC 1.1.1.82, NADP-MDH) and the pool size of photosynthetic end electron acceptors, resulting in an over-reduction of the photosystem I (PSI) acceptor side. The over-reduction of the PSI acceptor side further inhibited electron transport from the photosystem II (PSII) reaction centers to the PSII acceptor side as indicated by an increase in V(J) (the relative variable fluorescence at J-step), causing an imbalance between photosynthetic light absorption and energy utilization per active reaction center (RC) under high light, which led to the over-excitation of the PSII reaction centers. The over-reduction of the PSI acceptor side and the over-excitation of the PSII reaction centers enhanced the accumulation of reactive oxygen species (ROS), which inhibited the repair of the photodamaged PSII. However, the inhibition of the AOX pathway did not change the level of photoinhibition under high light in the presence of the chloroplast D1 protein synthesis inhibitor chloramphenicol, indicating that the inhibition of the AOX pathway did not accelerate the photodamage to PSII directly. All these results suggest that the AOX pathway plays an important role in the protection of plants against photoinhibition by minimizing the inhibition of the repair of the photodamaged PSII through preventing the over-production of ROS.  相似文献   

5.
Copper effect on the protein composition of photosystem II   总被引:1,自引:0,他引:1  
We provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μ M CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.  相似文献   

6.
Hg2+对菠菜离体类囊体膜光化学活性和多肽组分的影响   总被引:12,自引:0,他引:12  
重金属Hg^2+对菠菜(Spinacia oleracea L.)离体类囊体膜的光合电子传递活性、室温吸收光谱、室温荧光发射光谱以及多肽组分影响的研究结果表明:Hg^2+对两个光系统的电子传递活性都有抑制作用,且Hg^2+对PSI的抑制作用较PSⅡ大;Hg^2+处理使类囊体膜的室温吸收光谱峰及室温荧光发射峰降低,但未使类囊体膜的多肽组分发生改变。  相似文献   

7.
The effects of squamocin ( 1 ), bullatacin ( 2 ) and motrilin ( 3 ), 3 bis-tetrahydrofuran Annonaceous acetogenins, isolated from Annona purpurea (Annonaceae), were investigated on several photosynthetic activities in spinach thylakoids. The results indicated that compounds 1 – 3 significantly inhibited both ATP synthesis and uncoupled electron transport. In addition, they enhanced light-activated Mg2+-ATPase, and basal electron flow. Therefore, acetogenins 1 – 3 behave as uncouplers and Hill reaction inhibitors. Natural products 1 – 3 did not affect photosystem I (PSI) activity but they inhibited photosystem II (PSII) electron flow. The study of the partial PSII reactions from H2O to DCPIPox, H2O to SiMo and diphenylcarbazide to DCPIP established that the site of inhibition was at the oxygen-evolving complex (OEC). Chlorophyll a fluorescence measurements confirmed the behavior of the Annonaceous acetogenins as water-splitting enzyme inhibitors.  相似文献   

8.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

9.
Martin B  Ort DR 《Plant physiology》1982,70(3):689-694
Chilling tomato plants (Lycopersicon esculentum Mill. cv. Rutgers and cv. Floramerica) in the dark resulted in a sizable inhibition in the rate of light- and CO2-saturated photosynthesis. However, at low light intensity, the inhibition disappeared and the absolute quantum yield of CO2 reduction was diminished only slightly. The quantum yield of photosystem II (PSII) electron flow was 18% lower when measured in chloroplasts isolated from chilled leaves than in chloroplasts isolated from unchilled leaves. Even though the maximum rate of PSII turnover in these chloroplasts was 12% lower subsequent to chilling, it was in all cases two or more times that required to support the light- and CO2-saturated rate of photosynthesis measured in the attached leaf. The concentration of active PSII centers in chloroplasts isolated from leaves either before or after chilling was determined by measurement of the products of water oxidation from a series of saturating flashes short enough to turnover the electron transport carriers only a single time. There was no significant change in the concentration of active PSII centers due to dark chilling.

It was concluded that PSII activity and water oxidation capacity are not significantly impaired in tomato by chilling in the dark and therefore are not primary aspects of the inhibition of CO2 reduction observed in attached leaves.

  相似文献   

10.
The effect of chromium (Cr) on photosystem II (PSII) electron transport and the change of proteins content within PSII complex were investigated. When Lemna gibba was exposed to Cr during 96 h, growth inhibition was found to be associated with an alteration of the PSII electron transport at both PSII oxidizing and reducing sides. Investigation of fluorescence yields at transients K, J, I, and P suggested for Cr inhibitory effect to be located at the oxygen-evolving complex and QA reduction. Those Cr-inhibitory effects were related to the change of the turnover of PSII D1 protein and the alteration of 24 and 33 kDa proteins of the oxygen-evolving complex. The inhibition of the PSII electron transport and the formation of reactive oxygen species induced by Cr were highly correlated with the decrease in the content of D1 protein and the amount of 24 and 33 kDa proteins. Therefore, functional alteration of PSII activity by Cr was closely related with the structural change within PSII complex.  相似文献   

11.
Since the thylakoid membranes of an active chloroplast are constantly exposed to the electric fields generated by the electron transport system inside the membranes, we have studied the effects of pretreating chloroplasts of spinach ( Spinacia oleracea L.) leaves with an external AC (alternating current) electric field on their electron transport system. It was found that a few minutes electric field pretreatment (333 V cm-1 across chloroplast samples), especially at low frequency, irreversibly inhibited the activity of photosystem II (PSII), but under certain conditions, stimulated that of photosystem I (PSI). From the measurements of fluorescence from PSII, we ascribe the inhibition to a lesion close to its reaction center P680, leading to increased dissipation of excitation energy to heat. The effect on PSI was investigated by the reduction of its reaction center, P700 by various artificial donors. We suggest that the stimulative effect can be attributed to a positive shift of the surface charge density of thylakoid membranes that brings about an increase in the accessibility of exogenous electronegative donors.  相似文献   

12.
Miskell JA  Parmenter G  Eaton-Rye JJ 《Planta》2002,215(6):969-979
To identify physiological processes that might limit photosynthesis in Panax quinquefolius L. (American ginseng) a comparison has been made with Panax ginseng C.A. Meyer (Korean ginseng), Pisum sativum L. (pea) and Spinacia oleracea L. (spinach). The quantum yield of oxygen evolution in intact leaves and isolated thylakoid membranes was found to be smaller in ginseng than in pea or spinach. However, the number of photosystem II (PSII) centers on a chlorophyll basis was found to be similar in all species. This suggests that ginseng thylakoid membranes possess relatively more inactive PSII centers than thylakoids of pea and spinach when grown under similar conditions. Unexpectedly, whole-chain electron transport from water to methyl viologen, and partial photosystem I reactions, demonstrated that electron transport rates to methyl viologen were anomalously low in P. quinquefolius and P. ginseng. Additionally, at elevated light intensities, intact leaves of P. quinquefolius were more susceptible to lipid peroxidation than pea leaves. In plants grown at a light intensity of 80 micro mol photons m(-2) s(-1) the levels of fructose and starch were higher in both ginseng species than in pea or spinach. Significantly, the level of starch in P. quinquefolius was relatively constant throughout the entire 12 h/12 h light/dark cycle and remained high after an extended dark time of 48 h. In addition, P. quinquefolius had lower activities of alpha-amylase and beta-amylase than P. ginseng, pea and Arabidopsis thaliana (L.) Heynh. The significance of the elevated levels of leaf starch in P. quinquefolius remains to be determined. However, the susceptibility of P. quinquefolius to photoinhibition may arise as a consequence of a reduced fraction of active PSII centers. This may result in the normal dissipative mechanisms in these plants becoming saturated at elevated, but moderate, light intensities.  相似文献   

13.
The electron transport properties of photosystem II (PSII) from five different domains of the thylakoid membrane were analyzed by flash-induced fluorescence kinetics. These domains are the entire grana, the grana core, the margins from the grana, the stroma lamellae, and the Y100 fraction (which represent more purified stroma lamellae). The two first fractions originate from appressed grana membranes and have PSII with a high proportion of O(2)-evolving centers (80-90%) and efficient electron transport on the acceptor side. About 30% of the granal PSII centers were found in the margin fraction. Two-thirds of those PSII centers evolve O(2), but the electron transfer on the acceptor side is slowed. PSII from the stroma lamellae was less active. The fraction containing the entire stroma has only 43% O(2)-evolving PSII centers and slow electron transfer on the acceptor side. In contrast, PSII centers of the Y100 fraction show no O(2) evolution and were unable to reduce Q(B). Flash-induced fluorescence decay measurements in the presence of DCMU give information about the integrity of the donor side of PSII. We were able to distinguish between PSII centers with a functional Mn cluster and without any Mn cluster, and PSII centers which undergo photoactivation and have a partially assembled Mn cluster. From this analysis, we propose the existence of a PSII activity gradient in the thylakoid membrane. The gradient is directed from the stroma lamellae, where the Mn cluster is absent or inactive, via the margins where photoactivation accelerates, to the grana core domain where PSII is fully photoactivated. The photoactivation process correlates to the PSII diffusion along the membrane and is initiated in the stroma lamellae while the final steps take place in the appressed regions of the grana core. The margin domain is seemingly very important in this process.  相似文献   

14.
The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.  相似文献   

15.
Seedlings of barley ( Hordeum vulgare L. cv. Conquest) were dark-grown for 7 days and then transferred to light. The time courses of chlorophyll a fluorescence induction underwent changes during greening periods of from 3 to 48 h. Yields of variable fluorescence during greening correlated with electron transport capacity via photosystem II (PS II) except at the early stage from 3 to 6 h. The discrepancy may result from there being only a small amount of light harvesting complex associated with PSII for 3 to 6 h greening. Oxygen quenching effects were interpreted as indicating the development of the electron transport system and the organization of light harvesting complex associated with PSII. The most intensive O2 quenching of relative fluorescence is found during the early stage of greening when the ratio of the primary quinone electron acceptor (Q) to chlorophyll is high.  相似文献   

16.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   

17.
The photosynthetic machinery and, in particular, the photosystem II (PSII) complex are susceptible to strong light, and the effects of strong light are referred to as photodamage or photoinhibition. In living organisms, photodamaged PSII is rapidly repaired and, as a result, the extent of photoinhibition represents a balance between rates of photodamage and the repair of PSII. In this study, we examined the roles of electron transport and ATP synthesis in these two processes by monitoring them separately and systematically in the cyanobacterium Synechocystis sp. PCC 6803. We found that the rate of photodamage, which was proportional to light intensity, was unaffected by inhibition of the electron transport in PSII, by acceleration of electron transport in PSI, and by inhibition of ATP synthesis. By contrast, the rate of repair was reduced upon inhibition of the synthesis of ATP either via PSI or PSII. Northern blotting and radiolabeling analysis with [(35)S]Met revealed that synthesis of the D1 protein was enhanced by the synthesis of ATP. Our observations suggest that ATP synthesis might regulate the repair of PSII, in particular, at the level of translation of the psbA genes for the precursor to the D1 protein, whereas neither electron transport nor the synthesis of ATP affects the extent of photodamage.  相似文献   

18.
U Pick  M Weiss  H Rottenberg 《Biochemistry》1987,26(25):8295-8302
Palmitic acid and gramicidin D at low concentrations uncouple photophosphorylation in a mechanism that is inconsistent with classical uncoupling in the following properties: (1) delta pH, H+ uptake, or the transmembrane electric potential is not inhibited. (2) O2 evolution is stimulated under nonphosphorylating conditions but slightly inhibited in the presence of adenosine 5'-diphosphate + inorganic phosphate (Pi). (3) Light-triggered adenosine 5'-triphosphate (ATP)-Pi exchange is hardly affected, and ATPase activity is only slightly stimulated. (4) ATP-induced delta pH formation is selectively inhibited. This characteristic uncoupling is observed only when the native coupling sites of the electron transport system are used for energization such as for methylviologen-coupled phosphorylation. With pyocyanine, which creates an artificial coupling site, 1000-fold higher gramicidin D and higher palmitic acid concentrations are required for inhibition, and the inhibition is accompanied by a decrease in delta pH. Moreover, comparison between photosystem 1 and photosystem 2 electron transport and the effects of membrane unstacking suggest that low gramicidin D preferentially inhibits photosystem 2, while palmitic acid inhibits more effectively photosystem 1 coupling sites. The inhibitory capacity of fatty acids significantly drops when the chain length is reduced below 16 hydrocarbons or upon introduction of a single double bond in the hydrocarbon chain. It is suggested that palmitic acid and gramicidin D interfere with a direct H+ transfer between specific electron transport and the ATP synthase complexes, which provides an alternative coupling mechanism in parallel with bulk to bulk delta microH+. The sites of inhibition seem to be located in chloroplast ATP synthase, photosystem 2, and the cytochrome b6f complexes.  相似文献   

19.
The light-saturated rate of photosynthetic O2 evolution in Chlamydomonas reinhardtii declined by approximately 75% on a per-cell basis after 4 d of P starvation or 1 d of S starvation. Quantitation of the partial reactions of photosynthetic electron transport demonstrated that the light-saturated rate of photosystem (PS) I activity was unaffected by P or S limitation, whereas light-saturated PSII activity was reduced by more than 50%. This decline in PSII activity correlated with a decline in both the maximal quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers (PSII centers capable of performing a charge separation but unable to reduce the plastoquinone pool). In addition to a decline in the light-saturated rate of O2 evolution, there was reduced efficiency of excitation energy transfer to the reaction centers of PSII (because of dissipation of absorbed light energy as heat and because of a transition to state 2). These findings establish a common suite of alterations in photosynthetic electron transport that results in decreased linear electron flow when C. reinhardtii is limited for either P or S. It was interesting that the decline in the maximum quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers were regulated specifically during S-limited growth by the SacI gene product, which was previously shown to be critical for the acclimation of C. reinhardtii to S limitation (J.P. Davies, F.H. Yildiz, and A.R. Grossman [1996] EMBO J 15: 2150–2159).  相似文献   

20.
Light-harvesting capacities of photosystem I (PSI) and photosystemII (PSII) in a wild-type and three chlorophyll b-deficient mutantstrains of rice were determined by measuring the initial slopeof light-response curve of PSI and PSII electron transport andkinetics of light-induced redox changes of P-700 and QA, respectively.The light-harvesting capacity of PSI determined by the two methodswas only moderately reduced by chlorophyll b-deficiency. Analysisof the fluorescence induction that monitors time course of QAphotoreduction showed that both relative abundance and antennasize of PSIIa decrease with increasing deficiency of chlorophyllb and there is only PSII in chlorina 2 which totallylacks chlorophyll b. The numbers of antenna chlorophyll moleculesassociated with the mutant PSII centers were, therefore, threeto five times smaller than that of PSIIa in the wild type rice.Rates of PSII electron transport determined on the basis ofPSII centers in the three mutants were 60–70% of thatin the normal plant at all photon flux densities examined, indicatingthat substantial portions of the mutant PSII centers are inactivein electron transport. The initial slopes of light-responsecurves of PSII electron transport revealed that the functionalantenna sizes of the active populations of PSII centers in themutants correspond to about half that of PSII in the wild typerice. Thus, the numbers of chlorophyll molecules that serveas antenna of the oxygen-evolving PSII centers in the mutantsare significantly larger than those that are actually associatedwith each PSII center. It is proposed that the inactive PSIIserves as an antenna of the active PSII in the three chlorophyllb-deficient mutants of rice. In spite of the reduced antennasize of PSII, therefore, the total light-harvesting capacityof PSII approximately matches that of PSI in the mutants. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号