首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiol protease inhibitor (TPI) proteins in embryos of the brine shrimp Artemia were purified to apparent homogeneity and several of their properties were studied. Four protein fractions containing thiol protease inhibitor activity were obtained by high performance liquid chromatography of Artemia embryo proteins on a C-18 reverse-phase column and these were designated as TPI-1a, -1b, -2, and -3. Acrylamide gel electrophoresis showed that TPI-1a and TPI-1b each consisted of two bands of 11.8 and 13.6 kilodaltons (kDa), while TPI-2 and TPI-3 consisted of only one band of 12.5 kDa. Isoelectric focusing experiments demonstrated that TPI-3 contained one band at pH 5.3, while both TPI-1b and TPI-2 yielded bands at pH 5.2 and 5.3. TPI-1a did not yield any major bands. Amino acid composition analyses of the Artemia TPI proteins showed them to be remarkably similar to one another. All were rich in valine and aspartic and glutamic acids, and devoid of cysteine. Partial trypsin digestion of TPI-1b, TPI-2, and TPI-3 yielded several peptides with identical mobilities on a reverse-phase column and several other peptides with different mobilities, suggesting that the multiple forms of Artemia TPIs may have originated from the same parental protein. N-terminal amino acid sequence analyses of TPI-3 suggest that Artemia TPI proteins are members of the type I cystatin family of protease inhibitors.  相似文献   

2.
Purification and properties of a thiol protease from rat liver nuclei   总被引:1,自引:0,他引:1  
A thiol protease was purified about 800-fold from the chromatin fraction of rat liver by employing Sepharose 6B gel filtration, chromatofocusing and Sephadex G-100 gel filtration. It was nearly homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis and its molecular weight was about 29000. The isoelectric point of the enzyme was 7.1. The pH optimum for degradation of 3H-labelled ribosomal proteins was 4.5. It is noticeable that the maximal activity was shifted to pH 5.5 by DNA, and that 30-40% of the maximal activity was observed at neutral pH in the presence of DNA. The activity was increased about twice by 2-4 mM dithiothreitol. The protease may be specific for the nuclei because it is different from all lysosomal thiol proteases ever known.  相似文献   

3.
A protease from the lotus seed (Nelumbo nucifera Gaertn) was purified by acid-treatment, ammonium sulfate-fractionation, ethylalcohol-fractionation, TEAE-cellulose-treatment and Sephadex G-100 gel-filtration.

The enzyme was purified about 870-fold and was homogeneous in electrophoretic and ultracentrifugal analyses.

Purified lotus seed protease is an acid protease with a pH optimum at 3.8 toward urea-denatured casein. It is active for casein and hemoglobin. But other proteins such as edestin, zein, lotus seed globulin and soybean casein are slightly hydrolyzed and egg albumin is hardly hydrolyzed. This enzyme is most stable at pH 4.0 below 40°C. The enzyme is not a thiol protease, and its activity was completely inhibited by potassium permanganate, remarkably inhibited by sodium dodecylsulfate and accelerated by hydrogen peroxide.  相似文献   

4.
1. Proteolytic activities in early embryos of Xenopus laevis exhibited maximum levels at pH 3.2, 5.6 and 7.2 when 3H-BSA was used as substrate, and the maximum proteolytic activity at pH 3.2 was several thousand-fold higher during the tail bud stage than in the unfertilized egg. 2. The proteolytic activity at pH 3.2 was separated into two fractions by gel chromatography. One fraction corresponded to a mol. wt of about 40,000 and its activity was inhibited by thiol protease inhibitors. The other appeared to be a protease of much higher mol. wt. 3. The maximum activities at pH 5.6 and 7.2 appear to correspond to proteins of mol. wt greater than 1,000,000.  相似文献   

5.
1. Nuclei of regenerating rat liver washed with Triton X-100 were found to contain a new protease. Since the enzymatic activity for degrading ribosomal proteins was inhibited in vivo by administration of E-64, a thiol protease inhibitor, the enzyme may participate in the degradation of newly synthesized ribosomal proteins and histones in regenerating rat liver nuclei as reported previously by us [Biochem. Biophys. Res. Commun. 75, 525-531 (1077)]. The optimum pH was 5.5. 2. The enzyme was extracted from washed nuclei and partially purified by gel filtration through Sepharose 6B. Its molecular weight was about 40 000. A maximal activity of partially purified enzyme was observed in the presence of 1 mM EDTA and 2 mM dithiothreitol at pH 5.5 It was inhibited by thio reagents, E-64, leupeptin and hevy metal ions. The enzyme degraded ribosomal proteins endoproteolytically and degraded most proteins tested as substrates, although liver cell sap proteins and serum albumin were less degraded than ribosomal proteins and histones, alpha-N-Benzoylarginine-beta-naphthylamide and benzoylarginine amide were not hydrolyzed.  相似文献   

6.
A simple major protease, secreted into the medium during growth of Tetrahymena pyriformis strain W, has been purified about 4000-fold by (NH4)2SO4 precipitation, ion-exchange chromatography, gel filtration and affinity chromatography on organomercurial-Sepharose. The purified protease was homogeneous as judged by polyacrylamide gel electrophoresis and was a monomeric protein with a molecular weight of 22 000-23 000. Amino acid analysis showed that the enzyme was rich in acidic amino acids. In addition, the purified Tetrahymena protease consists of multiple forms with isoelectric point between pH 5.3 and 6.3. Optimum activity of the purified enzyme was in the pH range 6.5-8.0 with alpha-N-benzoyl-DL-arginine-p-nitroanilide and with azocasein, while it was in the lower pH range (4.5-5.5) for denatured hemoglobins. The purified enzyme was inhibited by compounds effective against thiol proteases. Leupeptin and chymostatin were potent inhibitors but pepstatin was without effect. This enzyme is similar to cathepsin B and appears to be a major proteolytic enzyme in Tetrahymena.  相似文献   

7.
Proteolytic processing enzymes are required to convert the enkephalin precursor to active opioid peptides. In this study, a novel 33-kDa thiol protease that cleaves complete precursor in the form of [35S]methionine preproenkephalin was purified from bovine adrenal medullary chromaffin granules. Chromatography on concanavalin A-Sepharose and Sephacryl S-200, chromatofocusing, and chromatography on thiopropyl-Sepharose resulted in an 88,000-fold purification with a recovery of 35% of enzyme activity. The thiol protease is a glycoprotein with a pI of 6.0. It cleaves [35S]methionine preproenkephalin with a pH optimum of 5.5, indicating that it is functional at the intragranular pH of 5.5-6.0. Interestingly, production of trichloroacetic acid-soluble products was optimal at pH 4.0, suggesting that processing of initial precursor and intermediates may require slightly different pH conditions. The protease requires dithiothreitol for activity and is inhibited by the thiol protease inhibitors iodoacetate, p-hydroxymercuribenzoate, mercuric chloride, and cystatin. These properties distinguish it from other thiol proteases (cathepsins B, H, L, N, and S), indicating that a unique thiol protease has been identified. The enzyme converted [35S]cysteine preproenkephalin (possessing [35S]cysteine residues specifically within the precursor's NH2-terminal segment) to 22.1-, 21.6-, 17.7-, 17.3-, and 15.0-kDa intermediates that contain the precursor's NH2-terminal segment; proenkephalin in vivo is converted to similar intermediates. The enzyme cleaves peptide F at Lys-Arg and Lys-Lys dibasic amino acid sites to generate methionine enkephalin and intermediates. The appropriate vesicular localization, pH optimum, proteolytic products, and cleavage site specificity suggest that this thiol protease may be involved in enkephalin precursor processing. Most interestingly, [35S]methionine beta-preprotachykinin, a precursor of substance P, is minimally cleaved, suggesting that the thiol protease may possess some selectivity for the enkephalin precursor.  相似文献   

8.
Cathepsin B was purified about 11,000-fold from monkey skeletal muscle by ammonium sulfate fractionation and sequential column chromatographies monitored by assaying of Z-Phe-Arg-MCA hydrolase activity. The purified enzyme gave a single protein band on SDS-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 24,000 by gel filtration. It had a pH optimum of 6.5, required a thiol reducing agent for activation, and was inhibited by various thiol protease inhibitors. These properties were similar to those reported for cathepsins B from other sources. Although the enzyme scarcely hydrolyzed ordinary proteins, such as casein, hemoglobin, and bovine serum albumin, it degraded myosin and actin among various myofibrillar proteins. These results strongly suggested that skeletal muscle cathepsin B may participate in the degradation of muscle proteins in vivo. In addition, cathepsin B was shown to hydrolyze various neuropeptides such as Leu-enkephalin, beta-neoendorphin, alpha-neoendorphin, dynorphin(1-13), and substance P. It appeared to act on these peptides mainly as a dipeptidyl carboxypeptidase, although not so rigorously, presumably due to its endopeptidase activity.  相似文献   

9.
Embryos of the crustacean, Artemia franciscana, undergo alternative developmental pathways, producing either larvae or encysted embryos (cysts). The cysts enter diapause, characterized by exceptionally high resistance to environmental stress, a condition thought to involve the sHSP (small heat-shock protein), p26. Subtractive hybridization has revealed another sHSP, termed ArHsp21, in diapause-destined Artemia embryos. ArHsp21 shares sequence similarity with p26 and sHSPs from other organisms, especially in the alpha-crystallin domain. ArHsp21 is the product of a single gene and its synthesis occurred exclusively in diapause-destined embryos. Specifically, ArHsp21 mRNA appeared 2 days post-fertilization, followed 1 day later by the protein, and then increased until embryo release at day 5. No ArHsp21 protein was detected in embryos developing directly into larvae, although there was a small amount of mRNA at 3 days post-fertilization. The protein was degraded during post-diapause development and had disappeared completely from second instar larvae. ArHsp21 formed large oligomers in encysted embryos and transformed bacteria. When purified from bacteria, ArHsp21 functioned as a molecular chaperone in vitro, preventing heat-induced aggregation of citrate synthase and reduction-driven denaturation of insulin. Sequence characteristics, synthesis patterns and functional properties demonstrate clearly that ArHsp21 is an sHSP able to chaperone other proteins and contribute to stress tolerance during diapause. As such, ArHsp21 would augment p26 chaperone activity and it may also possess novel activities that benefit Artemia embryos exposed to stress.  相似文献   

10.
The P1P4-bis(5'-nucleosidyl) tetraphosphate asymmetrical-pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia has been purified over 11,000-fold to homogeneity. Anion-exchange chromatography resolves two major species with very similar properties. The enzyme is a single polypeptide of Mr 17,600 and is maximally active at pH 8.4 and 2 mM-Mg2+. It is inhibited by Ca2+ (IC50 = 0.9 mM with 2 mM-Mg2+) but not by Zn2+ ions. It preferentially hydrolyses P1P4-bis(5'-nucleosidyl) tetraphosphates, e.g. P1P4-bis(5'-adenosyl) tetraphosphate (Ap4A) (kcat. = 12.7 s-1; Km = 33 microM) and P1P4-bis(5'-guanosyl) tetraphosphate (Gp4G) (kcat. = 6.2 s-1; Km = 5 microM). With adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) as substrate, there is a 4.5-fold preference for AMP and GTP as products and biphasic reaction kinetics are observed giving Km values of 4.7 microM and 34 microM, and corresponding rate constants of 6.5 s-1 and 11.9 s-1. The net rate constant for Ap4G hydrolysis is 7.6 s-1. The enzyme will also hydrolyse nucleotides with more than four phosphate groups, e.g. Ap5G, Ap6A and Gp5G are hydrolysed at 25%, 18% and 10% of the rate of Ap4A respectively. An NTP is always one of the products. Ap2A and Gp2G are not hydrolysed, while Ap3A and Gp3G are very poor substrates. When the enzyme is partially purified from embryos and larvae at different stages of development by sedimentation through a sucrose density gradient, its activity increases 3-fold during the first 12 h of pre-emergence development. This is followed by a slow decline during subsequent larval development. The similarity of this enzyme to other asymmetrical-pyrophosphohydrolases suggests that it did not evolve specifically to degrade the large yolk platelet store of Gp4G which is found in Artemia embryos, but that it probably serves the same general function in bis(5'-nucleosidyl) oligophosphate metabolism as in other cells.  相似文献   

11.
Previous analyses of glycolytic metabolites in Artemia embryos indicate that an acute inhibition of glucose phosphorylation occurs during pHi-mediated metabolic arrest under anoxia. We describe here kinetic features of hexokinase purified from brine shrimp embryos in an attempt to explain the molecular basis for this inhibition. At saturating concentrations of cosubstrate, ADP is an uncompetitive inhibitor toward glucose and a partial noncompetitive inhibitor toward ATP (Kis = 0.86 mM, Kii = 1.0 mM, Kid = 1.9 mM). With cosubstrates at subsaturating concentrations, the uncompetitive inhibition versus glucose becomes noncompetitive, while inhibition versus ATP remains partial noncompetitive. The partial noncompetitive inhibition of ADP versus ATP is characterized by a hyperbolic intercept replot. These product inhibition patterns are consistent with a random mechanism of enzyme action that follows the preferred order of glucose binding first and glucose-6-P dissociating last. We propose that inhibition by glucose-6-P (Kis = 65 microM) occurs primarily by competing with ATP at the active site, resulting in the formation of the dead-end complex, enzyme-glucose-glucose-6-P. Versus glucose, inhibition by glucose-6-P is uncompetitive at pH 8.0 and noncompetitive at pH 6.8. Over a physiologically relevant pH range of 8.0 to 6.8 alterations in Km and Ki values do not account for the reduction in glucose phosphorylation, and no evidence suggests that Artemia hexokinase activity is modulated by reversible binding to intracellular structures. Total aluminum in the embryos is 4.01 +/- 0.36 micrograms/g dry weight, or, based upon tissue hydration, 72 microM. This concentration of aluminum dramatically reduces enzyme activity at pH values less than 7.2, even in the presence of physiological metal ion chelators (citrate, phosphate). When pH, aluminum, citrate, phosphate, substrates, and products were maintained at cellular levels measured under anoxia, we can account for a 90% inhibition of hexokinase relative to activity under control (aerobic) conditions.  相似文献   

12.
We reported previously that the major cysteine protease in embryos and larvae of the brine shrimp, Artemia franciscana, is a heterodimeric protein consisting of a catalytic subunit (28.5 kDa) with a high degree of homology with cathepsin L, and a noncatalytic subunit (31.5 kDa) of unknown function. In the study reported here the noncatalytic subunit, or cathepsin L-associated protein (CLAP), was separated from cathepsin L by chromatography on Mono S and found to contain multiple isoforms with pIs ranging from 5.9 to 6.1. Heterodimeric and monomeric cathepsin L showed similar activity between pH 5 and 6.5, while the heterodimer was about twice as active as monomeric cathepsin L below pH 5. The heterodimer was more stable than the monomer between pH 6 and 7.4 and at 30-50 degrees C. Artemia CLAP and cathepsin L are present in nearly equimolar amounts at all stages in the life cycle and most abundant in encysted eggs and embyros. Moreover, CLAP, either free or as a complex with cathepsin L, was resistant to hydrolysis by cathepsin L. Two clones coding for CLAP were isolated from an Artemia embryo cDNA library and sequenced. Both clones have nearly identical open reading frames, but show differences at the 5'- and 3'-termini. Each cDNA clone has an extensive 3'-untranslated region containing 70-72% A+T. The deduced amino acid sequence of CLAP cDNA revealed two domains which were very similar to domains in fasciclin I and other cell adhesion proteins. The nucleotide sequences of clones 1 and 2 have been entered into the NCBI database (AY307377 and AY462276). This study supports the view that the noncatalytic subunit of the heterodimeric cysteine protease in Artemia stabilizes cathepsin L at various pH and temperatures normally inconsistent with cathepsin L from other organisms, and that CLAP serves as a docking mechanism for cathepsin L at nonlysosomal sites in Artemia embryos.  相似文献   

13.
Developmental and comparative aspects of brine shrimp tubulin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Tubulin from embryos of the brine shrimp Artemia has been purified to apparent homogeneity by chromatography on phosphocellulose P11 and DEAE-cellulose, (NH4)2SO4 fractionation and assembly-disassembly of microtubules. Peptide mapping indicated that Artemia and bovine brain tubulin were very similar in spite of differences in the electrophoretic behaviour of tubulin from these two organisms. Isoelectric focusing and two-dimensional gel electrophoresis were used to resolve and identify several Artemia isotubulins . The isotubulin composition and the quantity of tubulin did not change during pre-emergence development of Artemia embryos. Formation of microtubules with tubulin purified from embryos at different stages of development did not require glycerol or microtubule-associated proteins and formation of structurally normal microtubules was actually hindered by glycerol and Mg2+. The characteristics of Artemia tubulin, in concert with the unusual life history of Artemia, suggest that this organism will be very useful for the study of tubulin gene expression and tubulin utilization during embryo development.  相似文献   

14.
Small heat shock/alpha-crystallin proteins function as molecular chaperones, protecting other proteins from irreversible denaturation by an energy-independent process. The brine shrimp, Artemia franciscana, produces a small heat shock/alpha-crystallin protein termed p26, found in embryos undergoing encystment, diapause, and metabolic arrest. These embryos withstand long-term anoxia and other stresses normally expected to cause death, a property likely dependent on molecular chaperone activity. The association of p26 with tubulin in unfractionated cell-free extracts of Artemia embryos was established by affinity chromatography, suggesting that p26 chaperones tubulin during encystment. To test this possibility, both proteins were purified by modifying published protocols, thereby simplifying the procedures, enhancing p26 yield about 2-fold, and recovering less tubulin than before. The denaturation of purified tubulin as it "aged" and exposed hydrophobic sites during incubation at 35 degrees C was greatly reduced when p26 was present; however, tubulin polymerization into microtubules was reduced. On incubation at 35 degrees C, centrifugation in sucrose density gradients demonstrated the association of purified p26 with tubulin. This is the first study where the relationship between a small heat shock/alpha-crystallin protein and tubulin from the same physiologically stressed organism was examined. The results support the proposal that p26 binds tubulin and prevents its denaturation, thereby increasing the resistance of encysted Artemia embryos to stress. Additional factors are apparently required for release of tubulin from p26 and restoration of efficient assembly, events that would occur as embryos resume development and the need for microtubules is established.  相似文献   

15.
A novel protease was purified to homogeneity from the latex of Pedilanthus tithymaloids by a simple purification procedure involving ammonium sulfate precipitation and cation-exchange chromatography. The molecular weight of the protease was estimated to be approximately 63.1 kDa and the extinction coefficient (epsilon(1%)(280nm)) was 28.4. The enzyme hydrolyzes denatured natural substrates like casein, azoalbumin and azocasein with a high specific activity but little activity towards synthetic substrates. The pH and temperature optima were pH 8.0-9.5 and 65-70 degrees C, respectively. The proteolytic activity of the enzyme was inhibited by different protease-specific inhibitors (e.g., thiol, serine, metallo, etc.) up to a certain extent but not completely by any class of inhibitors. The enzyme was relatively stable towards pH change, temperature, denaturants and organic solvents. The enzyme consists of five disulfide bridges compared to three observed in most plant cysteine proteases. Overall, the striking features of this protease are its high molecular weight, high cysteine content and only partial inhibition of activity by different classes of protease inhibitors contrary to known proteases from other plant sources. The enzyme is named as pedilanthin as per the protease nomenclature.  相似文献   

16.
The 73-kDa protease (73K protease) was purified from a clinical isolate of Serratia marcescens kums 3958. The purified protease appeared homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis in the presence or absence of 2-mercaptoethanol. The protease is active in a broad pH range with maximum activity at pH 7.5-8.0. The protease appeared to be a thiol protease, since it was inhibited by sulfhydryl reactive compounds such as p-chloromercuribenzoic acid, fluorescein mercuric acetate (FMA), iodoacetamide, and N-ethylmaleimide, and the protease activity was enhanced by various reducing agents such as cysteine, glutathione, 2-mercaptoethanol, and dithiothreitol. The protease contained 2 mol of free sulfhydryl residues per mol of protease. When the protease was reacted with FMA, a maximum of 2 mol of FMA per mol of enzyme was found reacted, based on fluorescence quenching in which the enzyme inactivation was paralleled linearly with the loss of both SH groups. This indicates possible equal involvement of the two thiol groups for the enzyme activity. The inactivation of the protease by FMA was partially restored by a dialysis in the presence of cysteine or dithiothreitol. The protease was not inhibited by high molecular weight kininogen but was inhibited by alpha 2-macroglobulin. The protease bound stoichiometrically to alpha 2-macroglobulin with 1:1 molar ratio and 25% activity remained constant even after the addition of 4 molar excess of alpha 2-macroglobulin. The protease extensively degraded IgG, IgA, fibronectin, fibrinogen, and alpha 1-protease inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry.  相似文献   

18.
Goat liver catalase (EC 1.11.1.6) has been purified to homogeneity using the techniques of ammonium sulfate fractionation, DEAE-cellulose chromatography and gel-filtration through Ultrogel AcA-34 involving two alternating steps of column chromatography. The homogeneity of the purified enzyme was tested by native and sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunodiffusion and immunoelectrophoresis. The enzyme is a tetramer having a subunit molecular weight of 58,000 +/- 3000, contains six sulfhydryl groups per mole of the enzyme and shows pH optima at pH 6.8 and 7.7. The kinetic data show no cooperativity between the substrate binding sites. Tryptophan, indoleacetic acid, cysteine, formaldehyde and sodium azide inhibit the enzyme non-competitively with Ki values of 4 +/- 1, 2.5 +/- 0.8, 6 +/- 1.5, 0.48 +/- 0.15 and 0.0013 +/- 0.0003 mM, respectively. Sulfhydryl group binding agents as well as thiol reagents inhibit the enzyme activity.  相似文献   

19.
1. A neutral thiol protease was purified from the culture filtrate of newly excysted metacercariae of Paragonimus westermani to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, having a monomeric form with mol. wt 22,000. 2. It expressed activity on t-butyloxycarbonyl-valyl-leucyl-lysyl-4-methyl-coumaryl-7-amide in the presence of cysteine at an optimal pH of 7.5, and also the activity was significantly affected by thiol protease inhibitors, indicating that the enzyme belongs to a neutral thiol protease family. 3. The enzyme hydrolyzed protein substrates, azocoll, casein and fluorescein isothiocyanate-labeled collagen, and showed low specificity toward hemoglobin, but no activity with elastin Congo Red and bovine serum albumin. 4. Catalytic property on fluorogenic substrates demonstrated that the enzyme cleaved preferentially the carboxylic side of the basic residue in N-substituted peptides.  相似文献   

20.
Encysted embryos of the crustacean Artemia salina contain an enzymatic activity which hydrolyzes N-acetylphenylalanyl-tRNA to N-acetylphenylalanine and tRNA. The enzyme apparently does not hydrolyze other free or N-substituted aminoacyl-tRNAs. The levels of this enzyme do not significantly change during embryonic and early larval development. In contrast, an unspecific hydrolase active on several N-substituted aminoacyl-tRNAs is practically absent in the encysted embryos and during embryogenesis and appears abruptly during larval development. The independent temporal expression of these two hydrolases during Artemia salina differentiation makes this organism siuitable for the study of the physiological role of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号