首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Badgers are facultatively social, forming large groups at high density. Group-living appears to have high reproductive costs for females, and may lead to increased levels of inbreeding. The extent of female competition for reproduction has been estimated from field data, but knowledge of male reproductive success and the extent of extra-group paternity remains limited. Combining field data with genetic data (16 microsatellite loci), we studied the mating system of 10 badger social groups across 14 years in a high-density population. From 923 badgers, including 425 cubs, we were able to assign maternity to 307 cubs, with both parents assigned to 199 cubs (47%) with 80% confidence, and 14% with 95% confidence. Age had a significant effect on the probability of reproduction, seemingly as a result of a deficit of individuals aged two years and greater than eight years attaining parentage. We estimate that approximately 30% of the female population successfully reproduced in any given year, with a similar proportion of the male population gaining paternity across the same area. While it was known there was a cost to female reproduction in high density populations, it appears that males suffer similar, but not greater, costs. Roughly half of assigned paternity was attributed to extra-group males, the majority of which were from neighbouring social groups. Few successful matings occurred between individuals born in the same social group (22%). The high rate of extra-group mating, previously unquantified, may help reduce inbreeding, potentially making philopatry a less costly strategy.  相似文献   

2.
It is widely accepted that natal philopatry is a prerequisite for the evolution of sociality. The life-history hypothesis maintains that longevity of adults results in extended territory tenure and thus limits breeding vacancies for offspring, which makes natal philopatry more likely. Here, we tested the importance of longevity for natal philopatry in females of a basal primate, the grey mouse lemur (Microcebus murinus). This species is regarded as being solitary due to its foraging habits but while males disperse, female offspring in this species forgo dispersal and form long-term sleeping groups with their mothers. We tested whether high adult survival could be a cause for natal philopatry of female offspring. In addition, we assessed costs and benefits associated with space sharing between mothers and daughters and whether mothers actively increase survival of daughters by beqeauthal of territories, information transfer about resources or thermoregulation. Contrary to our predictions, adult females had low-survival rates. Space sharing appeared to improve survival of both, mothers and daughters. This could be a result of information transfer about sleeping sites and thermoregulatory benefits. Our results cast doubt on the idea that longevity predisposes species for social traits and provide support for benefits of philopatry.  相似文献   

3.
Female philopatry and male dispersal are the norm for most mammals, and females that remain in their natal region often derive foraging or social benefits from proximity to female kin. However, other factors, such as constraints on group size or a shortage of potential mates, may promote female dispersal even when female kin associations would be beneficial. In these cases, female kin associations might develop, not through female philopatry, but through female emigration to the same group. To date, little attention has been focused on the potential for kin-biased behaviour between females in female-dispersing species. Here we investigate the genetic relationships among adults in eight wild groups of unhabituated western gorillas (Gorilla gorilla) at the Mondika Research Center using microsatellite genotyping of DNA collected from hair and faeces. We found that almost half (40%) of adult females had an adult female relative in the same group and average within-group relatedness among females was significantly higher than that expected under a model of random dispersal. This provides the first genetic evidence that females can maintain social associations with female relatives in spite of routine natal and secondary dispersal. In addition, we show that females appear to avoid related silverback males when making dispersal decisions, suggesting that a strategy of non-random female dispersal may also function to avoid inbreeding.  相似文献   

4.
Delayed juvenile dispersal is an important prerequisite for the evolution of family‐based social systems, such as cooperative breeding and eusociality. In general, young adults forego dispersal if there are substantial benefits to remaining in the natal nest and/or the likelihood of dispersing and breeding successfully is low. We investigate some general factors thought to drive delayed juvenile dispersal in the horned passalus beetle, a family‐living beetle in which young adults remain with their families in their natal nest for several months before dispersing. Fine‐scale population genetic structure indicated high gene flow between nest sites, suggesting that constraints on mobility are unlikely to explain philopatry. Young adults do not breed in their natal log and likely disperse before reaching breeding age, suggesting that they do not gain direct reproductive benefits from delayed dispersal. We also examined several ways in which parents might incentivize delayed dispersal by providing prolonged care to adult offspring. Although adult beetles inhibit fungal growth in the colony by manipulating both the nest site and deceased conspecifics, this is unlikely to be a major explanation for family living as both parents and adult offspring seem capable of controlling fungal growth. Adult offspring that stayed with their family groups also neither gained more mass nor experienced faster exoskeleton development than those experimentally removed from their families. The results of these experiments suggest that our current understanding of the factors underlying prolonged family living may be insufficient to explain delayed dispersal in at least some taxa, particularly insects.  相似文献   

5.
Dispersal strategies in Tasmanian native hens (Gallinula mortierii)   总被引:1,自引:0,他引:1  
Individuals in cooperatively breeding species face a complexset of decisions when they reach reproductive maturity. Duringan 8-year study, we examined the histories of 214 Tasmaniannative hens (Gallinula mortierii) from hatching to examinethe strategies they used to acquire breeding positions andthe reproductive success they experienced in those breedingpositions. Two-thirds of young delayed dispersal from theirnatal groups for at least a year. Ecological constraints werea partial cause of delayed dispersal; high-quality territorieswere rare and remained occupied due to high adult survivorship.There were also clear benefits of philopatry. Individuals thatinherited breeding positions on their natal territories gainedbetter quality positions and experienced higher reproductivesuccess in their first breeding attempts than did individualswho dispersed to other groups. Multivariate analyses showedthat the method of acquisition of breeding positions was theonly factor significantly related to the quality of the breedingpositions attained. Males were more likely to inherit breeding positions in their natal groups than were females. The compositionsof individuals' natal groups had no effect on whether theyinherited breeding positions or dispersed. In contrast, thecompositions of groups did appear to affect whether other birdsdispersed into them, with birds rarely moving into groups thatcontained breeders or nonbreeders of the same sex as the potential dispersers. Short-term removals of breeders confirmed this finding.These results suggest that both ecological constraints andbenefits of philopatry explain delayed dispersal in this species.  相似文献   

6.
In the first molecular study of a member of the threatened avian family, Mesitornithidae, we used nine polymorphic microsatellite loci to elucidate parentage, patterns of within-group kinship and occurrence of extra-group paternity in the subdesert mesite Monias benschi, of southwest Madagascar. We found this cooperatively breeding species to have a very fluid mating system. There was evidence of genetic monogamy and polygynandry: of the nine groups with multiple offspring, six contained one breeding pair with unrelated helpers and three contained multiple male and female breeders with related helpers. Although patterns of within-group kinship varied, there was a strong positive relationship between group size and relatedness, suggesting that groups form by natal philopatry. There was also a strong positive correlation between within-sex and between-sex relatedness, indicating that unlike most cooperatively breeding birds, philopatry involved both sexes. In contrast to predictions of kin selection and reproductive skew models, all monogamous groups contained unrelated individuals, while two of the three polygynandrous groups were families. Moreover, although between-group variation in seasonal reproductive success was related to within-group female relatedness, relatedness among males and between the sexes had no bearing on a group's reproductive output. While kin selection may underlie helping behaviour in females, factors such as direct long-term fitness benefits of group living probably determine helping in males. Of the 14 offspring produced by fully sampled groups, at least two were sired by males from neighbouring groups: one by a breeding male and one by a nonbreeding male, suggesting that males may augment their reproductive success through extra-group paternity.  相似文献   

7.
Reproductive skew is a measure of the proportion of individuals of each sex that breed in a group and is a valuable measure for understanding the evolution and maintenance of sociality. Here, we provide the first quantification of reproductive skew within social groups of European badgers Meles meles , throughout an 18-year study in a high-density population. We used 22 microsatellite loci to analyse within-group relatedness and demonstrated that badger groups contained relatives. The average within-group relatedness was high ( R =  0.20) and approximately one-third of within-group dyads were more likely to represent first-order kin than unrelated pairs. Adult females within groups had higher pairwise relatedness than adult males, due to the high frequency of extra-group paternities, rather than permanent physical dispersal. Spatial clustering of relatives occurred among neighbouring groups, which we suggest was due to the majority of extra-group paternities being attributable to neighbouring males. Reproductive skew was found among within-group candidate fathers ( B  = 0.26) and candidate mothers ( B  = 0.07), but not among breeding individuals; our power to detect skew in the latter was low. We use these results to evaluate reproductive skew models. Although badger society best fits the assumptions of the incomplete-control models, our results were not consistent with their predictions. We suggest that this may be due to female control of paternity, female–female reproductive suppression occurring only in years with high food availability resulting in competition over access to breeding sites, extra-group paternity masking the benefits of natal philopatry, and/or the inconsistent occurrence of hierarchies that are linear when established.  相似文献   

8.
We investigated patterns of relatedness and reproduction in a population of striped hyenas in which individuals are behaviourally solitary but form polyandrous spatial groups consisting of one adult female and multiple adult males. Group-mate males were often close relatives, but were unrelated or distantly related in some cases, indicating that male coalitions are not strictly a result of philopatry or dispersal with cohorts of relatives. Most male-female pairs within spatial groups were unrelated or only distantly related. Considering patterns of relatedness between groups, relatedness was significantly higher among adult males living in non-neighbouring ranges than among neighbouring males. Mean relatedness among male-female dyads was highest for group-mates, but relatedness among non-neighbouring males and females was also significantly higher than among dyads of opposite-sex neighbours. Female-female relatedness also increased significantly with increasing geographic separation. These unusual and unexpected patterns may reflect selection to settle in a nonadjacent manner to reduce inbreeding and/or competition among relatives for resources (both sexes), or mates (males). Finally, resident males fathered the majority of the resident female's cubs, but extra-group paternity was likely in 31% of the cases examined, and multiple paternity was likely in half of the sampled litters.  相似文献   

9.
In most cooperatively breeding birds the offspring of one sex, usually male, delays dispersal to remain on the natal territory and helps its parents to rear subsequent young. Thus delayed dispersal could be the first step in the evolution of cooperative breeding. We studied natal dispersal in a population of the group-living speckled warbler, Chthonicola sagittata, based on observations of a colour-banded population over 3 years. Unlike other group-living members of the Acanthizinae, all juvenile males in this population dispersed to settle on foreign territories as subordinates, which do not help rear the young. Speckled warblers showed all the life history traits that are thought to result in a saturated habitat and lead to delayed dispersal: they were sedentary, had high adult survival and had a male-biased sex ratio. However, they differed from other acanthizids in occurring at low density (0.18 birds/ha) on large breeding territories (6-12 ha), with a maximum of two males per territory. This may allow subordinates to live on foreign territories yet avoid aggression from dominants. A benefit of dispersal is that it provides an additional route to gaining a breeding vacancy. Dispersers can acquire vacancies on their new territory or on a neighbour's, but incest avoidance would be likely to constrain nondispersing males to neighbours' territories. A model of relative lifetime success showed that the survival benefits of natal philopatry are unlikely to outweigh this benefit of dispersal.  相似文献   

10.
Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F ST estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F ST values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.  相似文献   

11.
The relative roles of ecological constraints, the benefits of philopatry, and the role of life history continue to be debated in the evolution of natal philopatry and cooperative breeding. We compare three routes to breeding: departing to search for territories as a floater, staying and queuing to inherit the natal territory, or queuing and eventually shifting to a neighboring vacancy. Our model assumed a dominance-structured population. It quantifies the benefits of philopatry for varying-rank subordinates and contrasts it against the benefit of dispersal. We apply the model to data on Siberian jay Perisoreus infaustus, a species in which retained offspring do not help at the nest. The results indicate that territorial inheritance plays a small role in this species (presumably due to inbreeding avoidance), and territory acquisition is less constrained for dispersing than philopatric offspring. Nevertheless, small family groups-one or, at the most, two same-sex queuers-are predicted to form because philopatric offspring gain nepotistic benefits that improve their survival. This fits with data on group sizes and supports the idea of the natal territory as a safe haven for waiting for breeding opportunities. We also discuss our predictions in the light of ecological constraints and clarify recent confusingly different predictions on the role of habitat saturation as an explanation for delayed dispersal and cooperative breeding. We argue that "ecological constraint" is too wide a term to yield useful predictive power and that it is more appropriate to examine the consequences of specific life-history traits on the success of dispersers.  相似文献   

12.
Dispersal and philopatry in the European badger, Meles meles   总被引:3,自引:0,他引:3  
Rosie  Woodroffe  D. W. Macdonald    J. da  Silva 《Journal of Zoology》1995,237(2):227-239
In comparison with other carnivores, European badgers, Meles meles L., show an unusually high degree of natal philopatry. In this paper, we present data on temporary and permanent movements between groups, in both male and female badgers, in a moderately high density population. A relatively small proportion of males dispersed, alone, to neighbouring territories. Dispersing males were larger than those remaining in their natal groups, and following dispersal they had higher testosterone titres and maintained testicular activity for a greater part of the year. Circumstantial evidence suggests that immigrants were the principal breeding males in their new territories. Dispersal was slightly more common in females, which dispersed away from large groups, where their chances of breeding were relatively low. Females dispersed in coalitions of 2–3, over longer distances, to territories occupied by single females. Resident females disappeared following the arrival of the immigrants, suggesting that territory 'takeovers' may have occurred. Members of both sexes also made temporary 'visits' to neighbouring territories, probably to obtain extra-group matings. Comparison with other badger populations suggests that the frequency of male dispersal declines at high population densities. In contrast, there is no effect of density on female dispersal, which occurs only rarely in some other populations. We suggest that the pattern of female/female competition is too complex to be explained solely in terms of variation in population density.  相似文献   

13.
Sex-biased dispersal is well known for birds and mammals, typically by females and males, respectively. Little is known about general patterns of sex-biased dispersal in other animal taxa. We reviewed return rates for a model group of invertebrates (damselflies) and explored putative costs and benefits of dispersal by males and females. We used published capture–mark–recapture data and examined whether a sex bias existed in likelihood of recapture at least once, at both emergence and/or breeding sites. We assessed whether this metric of likelihood of recapture was indicative of dispersal or philopatry, and whether any emerging pattern(s) were consistent across damselfly families. Using a meta-analysis, we found a higher likelihood of recapture at least once for males than for females at both natal sites and breeding sites, which seemed attributable to higher female-biased dispersal, although female-biased mortality cannot be discounted particularly for some species. Sex biases in dispersal among damselflies may be understood based on sex differences in maturation rate and foraging behaviour, both of which should affect the costs and benefits of dispersing. This hypothesis may be useful for explaining patterns of dispersal in other animal taxa.  相似文献   

14.
Natal dispersal is an important component of bird ecology, plays a key role in many ecological and evolutionary processes, and has important conservation implications. Nevertheless, detailed knowledge on natal dispersal is still lacking in many bird species, especially raptors. We review and compile existing information from five tagging programmes of juvenile Montagu's harriers (Circus pygargus) in different Spanish regions, with PVC rings or wing tags, to provide an assessment of philopatry and natal dispersal of the species in Spain. Only 7% of all tagged harriers were observed as breeders in subsequent years. The percentage of philopatric (i.e. breeding within 10?km of the natal site) males and females was lower that 5%. Overall, there were no sexual differences in percentage of philopatric birds or dispersal distances, but we found study area differences. The low philopatry observed suggests a high capacity for natal dispersal in this species, for both sexes, and therefore high genetic mixing between populations. Differences in philopatry between study areas may be influenced by the different observation effort or detectability, or else reflect different philopatric strategies among populations. Finally, we found no significant differences in philopatry rate or dispersal distances related to tagging method, suggesting that tagging technique has a smaller effect than monitoring effort or observation ease on observation probability. Developing tagging programmes at a small scale and without procuring very large-scale and intensive subsequent monitoring is not worthwhile for evaluating philopatry and natal dispersal in this species.  相似文献   

15.
It remains poorly understood how effects of anthropogenic activity, such as large-scale habitat fragmentation, impact sociality in animals. In cooperatively breeding species, groups are mostly formed through delayed offspring dispersal, and habitat fragmentation can affect this process in two opposite directions. Increased habitat isolation may increase dispersal costs, promoting delayed dispersal. Alternatively, reduced patch size and quality may decrease benefits of philopatry, promoting dispersal. Here, we test both predictions in a cooperatively breeding bird (placid greenbul, Phyllastrephus placidus) from an Afrotropical cloud forest archipelago. Males born in fragmented forest dispersed about 1 year earlier than those born in continuous forest. Contrary to females, males also started to reproduce earlier and mostly settled within their natal patch. Females only rarely delayed their dispersal for more than 1 year, both in fragmented and continuous forests. Our results suggest that early male dispersal and reproduction is jointly driven by a decrease in the value of the natal territory and an increase in local breeding opportunities in fragmented forest. While plasticity in dispersal strategies of cooperative breeders in response to anthropogenic change is believed to optimize reproduction-survival trade-offs, to what extent it shapes the ability of species to respond to rapid environmental change remains to be studied.  相似文献   

16.
The genetic structure of a group or population of organisms can profoundly influence the potential for inbreeding and, through this, can affect both dispersal strategies and mating systems. We used estimates of genetic relatedness as well as likelihood-based methods to reconstruct social group composition and examine sex biases in dispersal in a Costa Rican population of white-throated magpie-jays ( Calocitta formosa , Swainson 1827), one of the few birds suggested to have female-biased natal philopatry. We found that females within groups were more closely related than males, which is consistent with observational data indicating that males disperse upon maturity, whereas females tend to remain in their natal territories and act as helpers. In addition, males were generally unrelated to one another within groups, suggesting that males do not disperse with or towards relatives. Finally, within social groups, female helpers were less related to male than female breeders, suggesting greater male turnover within groups. This last result indicates that within the natal group, female offspring have more opportunities than males to mate with nonrelatives, which might help to explain the unusual pattern of female-biased philopatry and male-biased dispersal in this system. We suggest that the novel approach adopted here is likely to be particularly useful for short-term studies or those conducted on rare or difficult-to-observe species, as it allows one to establish general patterns of philopatry and genetic structure without the need for long-term monitoring of identifiable individuals.  相似文献   

17.
The social behaviour of carrion crows varies between populations. In northern Spain cooperatively breeding groups form through delayed natal dispersal and/or immigration of individuals (usually males) into the territory. In this population, carrion crows therefore breed as either unassisted pairs, pairs with nondispersing 1-2-year-old helpers (nondispersers), pairs with immigrant helpers or mixed groups (pairs with both immigrants and nondispersers). We used a microsatellite-based genotyping system to determine the parentage of 57 nestlings (19 broods). Polygamous mating was involved in 26% of the broods and reproduction was shared among group members of both sexes in at least three groups. Immigrants of both sexes can therefore gain access to mates by living in a group, while reproduction is unlikely to involve nondispersers. This implies that nondispersers and immigrants gain different sorts of benefits from group living and helping at the nest. Our genetic data confirmed that nondispersers associated with their parents on the natal territory and therefore that delayed natal dispersal leads to family formation in the carrion crow. Polygamous mating was not found in groups without immigrants, suggesting that, in this population, breeders lose parentage in their brood when sociality is extended beyond the limit of the nuclear family.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

18.
19.
In a crowded environment the natal territory could serve as a haven for young and inexperienced offspring until a breeding vacancy emerges. Delayed dispersal and association with kin could then offer adaptive benefits through an individual fitness gain. Here we report that delayed dispersal is associated with a higher lifetime individual fitness in Siberian jay (Perisoreus infaustus) males. Sons bred more successfully and had more reproductive events in life when they delayed dispersal. The higher lifetime reproductive success when sons disperse later in life is sufficient to promote postponement of natal dispersal, suggesting that dispersal is delayed due to ecological constraints on access to high-quality habitats. We argue that the maintenance of this variation in the timing of dispersal and reproductive success can be reconciled with non-genetic mechanisms driving dispersal. Social dominance within broods reflecting environmental conditions during growth is such a mechanism.  相似文献   

20.
The ultimate causes for predominant male‐biased dispersal (MBD) in mammals and female‐biased dispersal (FBD) in birds are still subject to much debate. Studying exceptions to general patterns of dispersal, for example, FBD in mammals, provides a valuable opportunity to test the validity of proposed evolutionary pressures. We used long‐term behavioural and genetic data on individually banded Proboscis bats (Rhynchonycteris naso) to show that this species is one of the rare mammalian exceptions with FBD. Our results suggest that all females disperse from their natal colonies prior to first reproduction and that a substantial proportion of males are philopatric and reproduce in their natal colonies, although male immigration has also been detected. The age of females at first conception falls below the tenure of males, suggesting that females disperse to avoid father–daughter inbreeding. Male philopatry in this species is intriguing because Proboscis bats do not share the usual mammalian correlates (i.e. resource‐defence polygyny and/or kin cooperation) of male philopatry. They have a mating strategy based on female defence, where local mate competition between male kin is supposedly severe and should prevent the evolution of male philopatry. However, in contrast to immigrant males, philopatric males may profit from acquaintance with the natal foraging grounds and may be able to attain dominance easier and/or earlier in life. Our results on Proboscis bats lent additional support to the importance of inbreeding avoidance in shaping sex‐biased dispersal patterns and suggest that resource defence by males or kin cooperation cannot fully explain the evolution of male philopatry in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号