首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

2.
The microsomal fraction isolated from the testis of the urodele amphibian, Necturus maculosus, is very rich in cytochrome P-450 and three cytochrome P-450-dependent steroidogenic enzyme activities, 17 alpha-hydroxylase, C-17, 20-lyase, and aromatase. In this study, we investigated aspects of these reactions using both spectral and enzyme techniques. In animals obtained at different points in the annual cycle, Necturus testis microsomal P-450 concentrations ranged from 0.6-1.8 nmol/mg protein. Substrates for the three enzymes generated type I difference spectra; progesterone and 17 alpha-hydroxyprogesterone appeared to bind to one P-450 species while the aromatase substrates, androstenedione, 19-hydroxyandrostenedione, and testosterone, all bound to another P-450 species. Spectral binding constants (Ks) for these interactions were determined. Michaelis constants (Km) and maximum velocities were determined for progesterone 17 alpha-hydroxylation, 17 alpha-hydroxyprogesterone side-chain cleavage, and for the aromatization of androstenedione, 19-hydroxyandrostenedione, and testosterone. Measured either by spectral or kinetic methods, progesterone, androstenedione, and 19-hydroxyandrostenedione were high affinity substrates (Ks or Km less than 0.3 microM), while 17 alpha-hydroxyprogesterone and testosterone were low affinity substrates (Ks or Km = 0.6-4.8 microM). As evidence for the participation of cytochrome P-450 in these reactions, carbon monoxide was found to inhibit each of the enzyme activities studied. The activity of NADPH-cytochrome c reductase, a component of cytochrome P-450-dependent reactions, was also high in Necturus testis microsomes.  相似文献   

3.
Androstenedione formation from progesterone by P-450(17 alpha,lyase) was investigated in ovarian microsomes of immature rats treated with pregnant mare serum gonadotropin. Successive monooxygenase reactions in the formation of androstenedione without the intermediate leaving P-450(17 alpha,lyase) were demonstrated by a double-substrate double-label experiment using [14C]progesterone and 17 alpha-[3H]hydroxyprogesterone as substrates and also by specific reduction in the concentration of intermediate 17 alpha-hydroxyprogesterone in the reaction medium by reaction of liposomal P-450C21. A detailed kinetic study on the reactions of P-450(17 alpha,lyase) in microsomes was conducted in the steady state. Kinetic parameters indicated the C17,C20-lyase reaction for 17 alpha-hydroxyprogesterone (Km = 80 nM) to be strongly inhibited by progesterone (Ki = 8 nM). In the presence of a high concentration of progesterone, as in the case of in vivo rat ovary, most androstenedione is concluded to be formed directly from progesterone by successive monooxygenase reactions catalyzed by P-450(17 alpha,lyase). 20 alpha-Dihydroprogesterone competitively inhibited the C17,C20-lyase reaction for 17 alpha-hydroxyprogesterone with Ki = 23 nM, but had only slight effect on progesterone metabolism to androstenedione. 20 alpha-Dihydroprogesterone, thus, cannot be a regulator for androstenedione formation in rat ovary.  相似文献   

4.
Polyclonal antibody has been shown previously to react identically with cytochromes P-450b and P-450e purified from Long Evans rats and a strain variant of cytochrome P-450b purified from Holtzman rats (P-450bH). In the present study, an array of 12 different monoclonal antibodies produced against cytochrome P-450b has been used to distinguish among these closely related phenobarbital-inducible rat hepatic cytochromes P-450. In immunoblots and enzyme-linked immunosorbent assays, 10 monoclonal antibodies bind to cytochromes P-450b, P-450e, and P-450bH; one monoclonal antibody (B50) recognizes cytochromes P-450b and P-450bH but not cytochrome P-450e; and one monoclonal antibody (B51) is specific for cytochrome P-450b. In addition, one monoclonal antibody (BEF29) reacts strongly with cytochrome P-450f, and another antibody (BEA33) reacts weakly with cytochrome P-450a. No cross-reactions with cytochromes P-450c, P-450d, and P-450g-P-450j were detected with any of the monoclonal antibodies in these assays. Six spatially distinct epitopes on cytochrome P-450b were identified, and differences in antibody reactivity provided evidence for three additional overlapping epitopes. Several monoclonal antibodies are potent inhibitors of testosterone and benzphetamine metabolism supported by cytochrome P-450b in a reconstituted system. B50 and BE52 do not inhibit metabolism of the two substrates by microsomes from untreated rats, but inhibit benzphetamine N-demethylation and testosterone metabolism to 16 alpha- and 16 beta-hydroxytestosterone as well as androstenedione formation 67-94% by microsomes from phenobarbital-treated rats. No other pathways of testosterone metabolism are inhibited by these monoclonal antibodies. The differential inhibition of microsomal metabolism of benzphetamine and testosterone by these monoclonal antibodies is a reflection of the content and inducibility of cytochromes P-450b and P-450e as well as other cytochrome P-450 isozymes.  相似文献   

5.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

6.
Rat hepatic cytochrome P-450 form 3 (testosterone 7 alpha-hydroxylase; P-450 gene IIA1) and P-450 form RLM2 (testosterone 15 alpha-hydroxylase; P-450 gene IIA2) are 88% identical in primary structure, yet they hydroxylate testosterone with distinct and apparently unrelated regioselectivities. In this study, androstenedione and progesterone were used to assess the regioselectivity and stereospecificity of these two P-450 enzymes towards other steroid substrates. Although P-450 RLM2 exhibited low 7 alpha-hydroxylase activity with testosterone or progesterone as substrate (turnover number less than or equal to 1-2 nmol of metabolite/min per nmol of P-450), it did catalyse androstenedione 7 alpha-hydroxylation at a high rate (21 min-1) which exceeded that of P-450 3 (7 min-1). However, whereas P-450 3 exhibited a high specificity for hydroxylation of these steroids at the 7 alpha position (95-97% of total activity), P-450 RLM2 actively metabolized these compounds at four or more major sites including the nearby C-15 position, which dominated in the case of testosterone and progesterone. The observation that androstenedione is actively 7 alpha-hydroxylated by purified P-450 RLM2 suggested that this P-450 enzyme might make significant contributions to microsomal androstenedione 7 alpha-hydroxylation, an activity that was previously reported to be associated with immunoreactive P-450 3. Antibody inhibition experiments were therefore carried out in liver microsomes using polyclonal anti-(P-450 3) antibodies which cross-react with P-450 RLM2, and using a monoclonal antibody that is reactive with and inhibitory towards P-450 3 but not P-450 RLM2. P-450 3 was thus shown to catalyse only around 35% of the total androstenedione 7 alpha-hydroxylase activity in uninduced adult male rat liver microsomes, with the balance attributed to P-450 RLM2. The P-450-3-dependent 7 alpha-hydroxylase activity was increased to approximately 65% of the total in phenobarbital-induced adult male microsomes, and to greater than 90% of the total in untreated adult female rat liver microsomes. These observations are consistent with the inducibility of P-450 3 by phenobarbital and with the absence of P-450 RLM2 from adult female rat liver respectively. These findings establish that P-450 RLM2 and P-450 3 can both contribute significantly to microsomal androstenedione 7 alpha-hydroxylation, thus demonstrating that the 7 alpha-hydroxylation of this androgen does not serve as a specific catalytic monitor for microsomal P-450 3.  相似文献   

7.
For clarification of the effects of steroid concentration on steroidogenesis of adrenal microsomes, the kinetic parameters, Km and kcat, were determined in the steady-state for progesterone and 17 alpha-hydroxyprogesterone metabolism catalyzed by P-450C21 and P-450(17 alpha lyase) in guinea pig adrenal microsomes. At a high concentration of progesterone, it was equally metabolized by P-450C21 and P-450(17 alpha lyase), while at a low concentration, it was hydroxylated at 17 alpha-position with twice higher rate than at 21-position. 17 alpha-Hydroxyprogesterone is apparently metabolized preferentially by P-450C21 at any concentration. Although the productions of deoxycortisol and androstenedione from 17 alpha-hydroxyprogesterone were strongly inhibited by progesterone, androstenedione formation from progesterone was not inhibited by a high concentration of progesterone. The addition of liposomal P-450C21 to the reaction medium containing adrenal microsomes caused a decrease in the concentration of 17 alpha-hydroxyprogesterone released into the medium in the steady state reaction, but this had no effect on the activity of androstenedione formation from high concentrations of progesterone. It thus follows that androstenedione is produced by successive monooxygenase reactions without the release of 17 alpha-hydroxyprogesterone from P-450(17 alpha lyase) at a high concentration of progesterone, which is the condition of the adrenal microsomes in vivo.  相似文献   

8.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

9.
The binding of the amino steroid, 22-amino-23,24-bisnor-5-cholen-3 beta-ol (22-ABC), to rabbit liver cytochrome P-450 3c was studied using purified P-450 3c and liver microsomes prepared from rifampicin-treated B/J rabbits. 22-ABC binds to purified cytochrome P-450 3c producing a type II spectral change reflecting the coordination of the amine with the heme iron of the protein. In the absence of allosteric effectors, the binding is characterized by a Ks of 5 microM. In the presence of alpha-naphthoflavone or progesterone, the Ks decreases to 0.8 microM, indicating that these two compounds serve as positive effectors of the binding of 22-ABC to cytochrome P-450 3c. The antibiotic rifampicin induces cytochrome P-450 3c in rabbit liver microsomes, and the benzo(a)pyrene hydroxylase, estradiol 2-hydroxylase, and progesterone 6 beta-hydroxylase activities of these microsomes are stimulated by alpha-naphthoflavone. Moreover, the progesterone 6 beta-hydroxylase activity catalyzed by these microsomes exhibits a dependence on substrate concentration that is consistent with activation of the enzyme by the substrate, progesterone. The magnitude of the type II spectral change elicited by 22-ABC for microsomes prepared from rifampicin-treated B/J rabbits is greater than that observed for microsomes from untreated rabbits. For microsomes from rifampicin-treated rabbits, the apparent binding constant for 22-ABC was decreased 5-fold in the presence of alpha-naphthoflavone. We propose that the effects of alpha-naphthoflavone and progesterone on the binding of 22-ABC to cytochrome P-450 3c mimic the effects of the two positive effectors on the metabolism of substrates by increasing the affinity of the enzyme for substrate.  相似文献   

10.
9-Hydroxyellipticine (9-OHE), a potent inhibitor of rat liver monooxygenase activities, binds to the various forms of partially purified lung cytochromes P-450 from untreated and 3-methylcholanthrene (3-MC)-treated rabbits. The spectral data (lambda max: 428 nm (ox.), 447 nm (red.), Ks: 10 microM and 5 muM for cytochrome I and cytochrome II from 3-MC-treated rabbits respectively) resemble those obtained with cytochrome P-450 purified from liver of Aroclor 1254-pretreated rats (lambda max: 428 nm (ox.), 445 nm (red.), Ks: 8 microM). 9-OHE has been shown to inhibit the benzo[a]pyrene hydroxylase activity of rat and rabbit lung microsomes. The inhibitory effect was higher towards the 3-MC-induced lung microsomes than with the control microsomes. However, the lung microsomes, as well as the liver microsomes of rabbits were less sensitive to inhibition by 9-OHE than the corresponding microsomes from rats. These results suggest that rabbit and rat cytochromes P-450 have subtle structural differences.  相似文献   

11.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

12.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

13.
The relationships between structure and inhibitory potency toward microsomal cytochrome P-450 (P-450)-mediated androst-4-ene-3,17-dione hydroxylase activities were investigated in rat liver with a series of 5 alpha- and 5 beta-androstane derivatives. 5 beta-Reduced steroids (containing a cis-A/B ring junction) were more potent inhibitors than the 5 alpha-reduced epimers (containing a trans-A/B ring junction) except in the case of the 17 beta-hydroxy-substituted derivatives. The most effective inhibitor was 5 beta-androstane-3 beta-ol which exhibited I50 values of 7 and 27 microM against androstenedione 16 alpha- and 6 beta-hydroxylase activities, which are catalysed by P-450 IIC11 and IIIA2, respectively. In general, these two pathways of steroid hydroxylation were more susceptible to inhibition than the 7 alpha- and 16 beta-hydroxylase pathways. The 7 alpha-hydroxylase enzyme (P-450 IIA1) was only inhibited by 5 beta-reduced steroids that contained an oxygenated function at C17. All of the test compounds elicited type I spectral binding interactions with P-450 in oxidised microsomes. The most effective steroid inhibitors generally exhibited the greatest capacity to interact with P-450. Additional studies with one of the more potent compounds, 5 beta-androstane-3 beta-ol-17-one, revealed that the inhibition kinetics were competitive and that preincubation of the inhibitor with NADPH-supplemented microsomes prior to substrate (androstenedione) addition decreased the extent of inhibition observed. These findings are consistent with the assertion that the inhibition of hepatic steroid hydroxylases by 5 beta-androstanes involves an effective competitive interaction with the steroid substrate at the P-450 active site. Since the relative overproduction of 5 beta-reduced metabolites of certain androgens has been reported in clinical conditions, such as androgen insensitivity, it now appears important to investigate the hepatic drug oxidation capacity of patients with hormonal abnormalities.  相似文献   

14.
It has been shown that during the in vitro conversion of progesterone to androstenedione, 17 alpha-hydroxyprogesterone is not an obligatory intermediate which equilibrates with freely diffusible steroids in the incubation medium. Recently a cytochrome P-450 was purified that catalyzed, in addition to hydroxylase/lyase activities, reduction of androstenedione to testosterone. In order to determine whether progesterone could be transformed to testosterone without both intermediates (17 alpha-hydroxyprogesterone and androstenedione) being equilibrated with steroids in the medium, several double-label double-substrate experiments were performed. When rat microsomes were incubated with an equimolar mixture of [14C]progesterone and 17 alpha-hydroxy[3H]progesterone, androstenedione was isolated with a 11-fold higher 14C/3H ratio than 17 alpha-hydroxyprogesterone, indicating that androstenedione could not be produced from free, diffusible 17 alpha-hydroxyprogesterone. Incubation of an equimolar mixture of 17 alpha-hydroxy[3H]progesterone and [14C]androstenedione with testicular microsomes resulted in the incorporation of 3-4-fold more 17 alpha-hydroxyprogesterone into testosterone than of androstenedione, although the latter is the immediate precursor of testosterone. In an experiment in which equimolar concentrations of [3H]progesterone and [14C]androstenedione were incubated with testicular microsomes, the large pool of progesterone inhibited competitively lyase activity, but still the label of progesterone was incorporated into testosterone to the same extent as that of androstenedione. These results indicate that testosterone can be produced by immature rat testicular microsomes from added progesterone on an organized unit without the intermediates equilibrating with the incubation medium.  相似文献   

15.
Four isozymes of cytochrome P-450 were purified to varying degrees of homogeneity from liver microsomes of cod, a marine teleost fish. The cod were treated with beta-naphthoflavone by intraperitoneal injection, and liver microsomes were prepared by calcium aggregation. After solubilization of cytochromes P-450 with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate, chromatography on Phenyl-Sepharose CL-4B, and subsequently on DEAE-Sepharose, resulted in two cytochrome P-450 fractions. These were further resolved on hydroxyapatite into a total of four fractions containing different isozymes of cytochromes P-450. One fraction, designated cod cytochrome P-450c, was electrophoretically homogeneous, was recovered in the highest yield and constituted the major form of the isozymes. The relative molecular mass of this form (58 000) corresponds well with a protein band appearing in cod liver microsomes after treatment with beta-naphthoflavone. Both cytochrome P-450c and a minor form called cytochrome P-450d (56000) showed activity towards 7-ethoxyresorufin in a reconstituted system containing rat liver NADPH-cytochrome P-450 reductase and phospholipid. Differences between these two forms were observed in the rate and optimal pH for conversion of this substrate, and in optical properties. Rabbit antiserum to cod cytochrome P-450c did not show any cross-reactions with cod cytochrome P-450a (Mr 55000) or cytochrome P-450d in Ouchterlony immunodiffusion, but gave a precipitin line of partial identity with cod cytochrome P-450b (Mr 54000), possibly as a result of contaminating cytochrome P-450c in this fraction.  相似文献   

16.
Studies were carried out to investigate the effects of prostaglandins (PG) in vitro on adrenal microsomal steroid and drug metabolism in the guinea pig. The addition of PGE1, PGE2, PGA1, PGF or PGF to isolated adrenal microsomes produced typical type I difference spectra. The sizes of the spectra (ΔA385–420) produced by prostaglandins were smaller than those produced by various steroids including progesterone, 17-hydroxyprogesterone and 11β-hydroxyprogesterone. However, the affinities of prostaglandins and steroids for adrenal microsomal cytochrome P-450, as estimated by the spectral dissociation constants, were similar. Prior addition of prostaglandins to isolated adrenal microsomes did not affect steroid binding to cytochrome P-450 or the rate of steroid 21-hydroxylation. In contrast, prostaglandins inhibited adrenal metabolism of ethylmorphine and diminished the magnitude of the ethylmorphine-induced spectral change in adrenal microsomes. The results indicate that prostaglandins inhibit adrenal drug metabolism by interfering with substrate binding to cytochrome P-450. Since 21-hydroxylation was unaffected by PG, different cytochrome P-450 moieties are probably involved in adrenal drug and steroid metabolism.  相似文献   

17.
We have found cytochrome P-450(17alpha) in the islets of Langerhans of rat pancreas. Its existence coincided with that of insulin and demarcated those of glucagon and somatostatin, demonstrating the localization in beta-cells. The enzyme has not only 17alpha-hydroxylase activity but also lyase one, which is a prerequisite for androgen biosynthesis. The pancreatic microsomes converted progesterone mainly to androstenedione with a minor production of 17alpha-hydroxyprogesterone. Due to a low activity of the built-in lyase, cytochrome P-450(17alpha) requires a sufficient electron-transfer from P-450 reductase or presence of an activator to promote the C-C bond cleavage. In beta-cells, P-450 reductase was abundant and could efficiently transfer electrons to P-450(17alpha). Actually, inhibition with anti-P-450 reductase or limitation of NADPH preferentially reduced the lyase activity. Androstenedione was accumulated when its further metabolism was suppressed. We also found localization of cytochrome P-450scc and 3beta-hydroxysteroid dehydrogenase in beta-cells. These results indicate that the immediate substrate for androgen formation, progesterone, is intracellularly produced and is converted mainly to androstenedione with support by an efficient electron supply from P-450 reductase. The product was supposed to be further metabolized to the reduced derivatives such as testosterone, 5alpha-androstanedione, and dihydrotestosterone, which would act as local steroids in the islets of Langerhans.  相似文献   

18.
We study in HMC-1 the activation process, measured as histamine release. We know that ammonium chloride (NH(4)Cl) and ionomycin release histamine, and the modulatory role of drugs targeting protein kinase C (PKC), adenosine 3',5'-cyclic monophosphate (cAMP), tyrosine kinase (TyrK) and phosphatidylinositol 3-kinase (PI3K) on this effect. We used G?6976 (100 nM) and low concentration of GF 109203X (GF) (50 nM) to inhibit Ca(2+)-dependent PKC isozymes. For Ca(2+)-independent isozymes, we used 500 nM GF and 10 microM rottlerin (specifically inhibits PKCdelta). Phorbol 12-myristate 13-acetate (PMA) (100 ng/ml) was used to stimulate PKC, and genistein (10 microM) and lavendustin A (1 microM) as unspecific TyrK inhibitors. STI571 10 microM was used to specifically inhibit the activity of Kit, the receptor for stem cell factor, and 10 nM wortmannin as a PI3K inhibitor. Activation of PKC with PMA enhances histamine release in response to NH(4)Cl and ionomycin. PMA increases NH(4)Cl-induced alkalinization and ionomycin-induced Ca(2+) entry. Inhibition of PKCdelta strongly inhibits Ca(2+) entry elicited by ionomycin, but failed to modify histamine release. The effect of cAMP-active drugs was explored with the adenylate cyclase activator forskolin (30 microM), the inhibitor SQ22,536 (1 microM), the cAMP analog dibutyryl cAMP (200 microM), and the PKA blocker H89 (1 microM). Forskolin and dibutyryl cAMP do increase NH(4)Cl-induced alkalinization, and potentiate histamine release elicited by this compound. Our data indicates that alkaline-induced exocytosis is modulated by PKC and cAMP, suggesting that pH could be a modulatory signal itself.  相似文献   

19.
We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test.  相似文献   

20.
Histamine and polyamines have been implicated in the mediation of cell proliferation. Our previous work linked the growth-modulatory effects of histamine with its binding to intracellular sites in microsomes and nuclei of various tissues. In this study, we identify cytochrome P450 enzymes as a major component of microsomal intracellular sites in hepatocytes and demonstrate that polyamines compete with high affinity for histamine binding to them. Spectral measurement of histamine binding to P450 in liver microsomes resolved high and intermediate affinity binding sites (Ks1 = 2.4 ± 1.6 μM; Ks2 = 90 ± 17 μM) that corresponded to microsomal binding sites (Kd1 = 1.0 ± 0.9 μM; Kd2 = 57 ± 13 μM) resolved by 3H-histamine binding; additional low affinity (Kd3 ∼ 3 mM), and probably physiologically irrelevant, sites were resolved only by 3H-histamine radioligand studies. As determined spectrally, treatment of microsomes with NADPH/carbon monoxide decreased histamine binding to P450 by about 90% and, as determined by 3H-histamine binding, abolished the high affinity sites and reduced by 85% the number of intermediate sites. Spermine competed potently for 3H-histamine binding: in microsomes, Ki = 9.8 ± 5.8 μM; in nuclei, Ki = 13.7 ± 3.1 μM; in chromatin, Ki = 46 ± 33 nM. Polyamines inhibited the P450/histamine absorbance complex with the rank order of potency: spermine > spermidine ≫ putrescine. In contrast, histamine did not compete for 3H- spermidine binding in nuclei or microsomes, suggesting that polyamines modulate histamine binding allosterically. We propose that certain P450 isozymes that modulate gene function by controlling the level of oxygenated lipids, represent at least one common intracellular target of growth-regulatory endogenous bioamines and, as shown previously, of exogenous growth-modulatory drugs including antiestrogens, antiandrogens, and certain antidepressants and antihistamines. J. Cell. Biochem. 69:233–243, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号