首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectothermic vertebrates become thermally tolerant (heat hardened) after exposure to heat shock. Eukaryotic cells show a similar response. Cellular thermal tolerance is correlated with the induction of heat shock proteins (hsps). We have investigated the relationship between heat hardening in salamanders and the induction of hsps in the tissues of these organisms. Although the synthesis of hsps can be induced in these animals by sublethal heat shocks, conditions required for hsp induction and heat hardening often do not coincide. We conclude that induced thermal tolerance in adult salamanders is independent of hsp induction in their tissues.  相似文献   

2.
Flavonoids inhibit the expression of heat shock proteins   总被引:14,自引:0,他引:14  
Cells exposed to several forms of stress, such as heat shock, transiently synthesize a group of proteins called heat shock proteins (hsps). Although many stressors other than heat shock are known to induce hsps, inhibitors of hsp expression have never been reported. Here we show that quercetin and several other flavonoids inhibit the synthesis of hsps induced by heat shock in two human cell lines, Hela cells and COLO320 DM cells. Quercetin inhibited the induction of hsp70 at the level of mRNA accumulation. This is the first report to describe the inhibition of hsp expression by reagents.  相似文献   

3.
We examined the hypothesis that reactive oxygen species (ROS) contribute to the induction of heat shock proteins (hsps) during stress response. Exposure of HL-60 human myelocytic cells to 42 degrees C induced both hsp72 and hsp27. In the presence of the antioxidant molecules pyrrolidine dithiocarbamate or 1,10-phenanthroline induction of hsp72 and 27 was significantly decreased, while N-acetyl-L-cysteine caused a slight reduction. Prevention of hsp induction was associated with heat sensitization and increased caspase activity, indicating that the cells were undergoing apoptosis. These data suggest that ROS contribute to the induction of hsps and furthermore, that hsp induction and apoptosis are mutually exclusive events within the same cell.  相似文献   

4.
5.
Two-dimensional gel electrophoretic analysis of the heat shock response in the psychrotrophic yeastTrichosporon pullulans revealed the induction of 11 heat shock proteins (hsps) after a 5° to 21°C heat shock, 12 hsps after a 5° to 26°C heat shock, and 12 hsps after a 5° to 29°C heat shock. Heat shock from 5° to 26° or 29°C resulted in a statistically significant increase in thermotolerance to a lethal heat challenge at 45°C for 5 min. When the protein synthesis inhibitor, cycloheximide, was added prior to the heat shock, no statistically significant thermotolerance was acquired. To confirm the correlation between the synthesis of hsps and the acquisition of thermotolerance, protein extracts of cells that had been heat shocked in the presence or absence of cycloheximide were electrophoretically analyzed. Addition of the same concentration of cycloheximide that prevented the acquisition of thermotolerance also inhibited the synthesis of any hsps.  相似文献   

6.
An accumulation in cells of unfolded proteins is believed to be the common signal triggering the induction of heat shock proteins (hsps). Accordingly, in Saccharomyces cerevisiae, inhibition of protein breakdown at 30°C with the proteasome inhibitor MG132 caused a coordinate induction of many heat shock proteins within 1 to 2 h. Concomitantly, MG132, at concentrations that had little or no effect on growth rate, caused a dramatic increase in the cells’ resistance to very high temperature. The magnitude of this effect depended on the extent and duration of the inhibition of proteolysis. A similar induction of hsps and thermotolerance was seen with another proteasome inhibitor, clasto-lactacystin β-lactone, but not with an inhibitor of vacuolar proteases. Surprisingly, when the reversible inhibitor MG132 was removed, thermotolerance decreased rapidly, while synthesis of hsps continued to increase. In addition, exposure to MG132 and 37°C together had synergistic effects in promoting thermotolerance but did not increase hsp expression beyond that seen with either stimulus alone. Although thermotolerance did not correlate with hsp content, another thermoprotectant trehalose accumulated upon exposure of cells to MG132, and the cellular content of this disaccharide, unlike that of hsps, quickly decreased upon removal of MG132. Also, MG132 and 37°C had additive effects in causing trehalose accumulation. Thus, the resistance to heat induced by proteasome inhibitors is not just due to induction of hsps but also requires a short-lived metabolite, probably trehalose, which accumulates when proteolysis is reduced.  相似文献   

7.
Rat embryonic fibroblasts growing exponentially at either 35, 37, or 39 degrees C were exposed to 42 degrees C for times up to 6 hr. Cell survival was unaffected by this heat shock in cultures growing at 39 degrees C but survival was decreased in a temperature dependent manner in cells growing at 37 or 35 degrees C. Exposure to 42 degrees C of cells previously adapted to 35 or 37 degrees C resulted in the induction of heat shock proteins (hsps) with apparent molecular weights of 68,000 (hsp 68), 70,000 (hsp 70), and 89,000 (hsp 89); cells previously adapted to 39 degrees C expressed all hsps except hsp 68. Inasmuch as the synthesis of certain hsps may function to protect cells from thermal damage, these data indicate that hsp 68 may not be required for this adaptation-related thermotolerant survival response. Hsp 68 may only be expressed in cells destined to die.  相似文献   

8.
The responses to stress in living cells are well known. Thermal stress causes decreased protein synthesis as well as rapid induction of heat shock proteins (hsps), or alternately termed stress proteins (sps). The exposure of cultured promyelocytic leukemia cells (HL-60) to a 45 degrees C lethal heat shock for 1 h elicited synthesis and phosphorylation of a polypeptide M(r) 48,000 and pI 7.5 (p 48) as visualized by two-dimensional polyacrylamide gel ultra-microelectrophoresis. p 48, which was not observed at sublethal temperatures (39 and 41 degrees C), was synthesized during all phases of the cell cycle but was phosphorylated only in G0 + G1 and S-phases. The appearance of p 48 was marked by a concomitant and reciprocal reduction in hsps or sps 70 and 90. Distinct protease V8 fragment maps of p 48, hsps 70 and 90 in conjunction with immunochemical determination indicated vast differences in their primary structures. These facts suggest that p 48 was not formed from coalesced breakdown products of hsps 70 or 90. Western blotting showed that p 48 possessed the same immunochemical determinants as two other proteins with the same molecular mass but different isoelectric points. In an association assay, p 48 was shown to bind with actins and hsp 90 from HL-60 nuclei.  相似文献   

9.
The role of ergosterol in yeast stress tolerance, together with heat shock proteins (hsps) and trehalose, was examined in a sterol auxotrophic mutant of Saccharomyces cerevisiae. Ergosterol levels paralleled viability data, with cells containing higher levels of the sterol exhibiting greater tolerances to heat and ethanol. Although the mutant synthesised hsps and accumulated trehalose upon heat shock to the same levels as the wild-type cells, these parameters did not relate to stress tolerance. These results indicate that the role of ergosterol in stress tolerance is independent of hsps or trehalose.  相似文献   

10.
Bacterial toxins induce heat shock proteins in human neutrophils   总被引:1,自引:0,他引:1  
We studied the influence of different bacterial toxins (alveolysin; toxic shock syndrome toxin 1, TSST-1 and erythrogenic toxin A, ETA) on the expression of heat shock proteins (hsps) in isolated human polymorphonuclear granulocytes (PMNs). As was shown by Western blotting (anti-hsp72) ETA and TSST-1 were potent inducers of hsps at low toxin concentrations (10 ng/ml). Alveolysin led to the expression of hsps at hemolytic concentrations (1 HU; 700 ng/ml) whereas at subhemolytic concentrations (7 ng/ml) no heat shock response was observed. The induction of heat shock proteins was also accompanied by increased mRNA levels for hsp70 as was determined by PCR-analysis.  相似文献   

11.
The existence of stressor-specific induction programs of heat shock proteins (hsps) leads us to analyze the possible occurrence of a stressor-specific tolerance induced by either heat shock, arsenite, or cadmium. As a measure of this tolerance re-induction of hsps was studied. In this paper, we tested whether the refractory state is either valid for each specific hsp (implying independent regulation of every member of the heat shock protein family) or extends from small subsets of the hsp-family to even larger groups of proteins (indicating a more common denominator in their regulation). (Re-)induction of hsps does not seem to be regulated at the level of each individual hsp since differences in induced synthesis of hsps between two stressor conditions are not supplemented systematically upon the sequential application of the two stressors. The most notable example in this respect is hsp60. A pretreatment with cadmium, which hardly induces synthesis of this hsp, does induce a tolerance to (re)-induction by heat shock, which normally induces hsp60. This suggests the existence of a more common denominator regulating the coordinate expression of at least some hsps. From our data we conclude that the degree, but not the pattern, of hsp re-induction is influenced by the type of stressor used in the pretreatment. The pattern of hsps induced by a secondary applied stressor still shows most of its stressor-specificity and seems to be independent of any pretreatment. The possible implications of stressor-specificity are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
Factors influencing the heat shock response of Xenopus laevis embryos   总被引:1,自引:0,他引:1  
We have further characterized the heat shock response of Xenopus laevis embryos. Xenopus embryos respond to heat shock by consistently synthesizing four major heat shock proteins (hsps) of 62, 70, 76, and 87 kilodaltons. In addition to these hsps, heat-shocked embryos also exhibit the synthesis of several minor hsps. The synthesis of these hsps is often variable. We have monitored the effects of different temperatures and lengths of heat shock on the pattern and intensity of hsp synthesis. In general, the four major hsps are induced more strongly at higher temperatures and during increasing intervals of heat shock. The temperature and duration of heat shock can affect the synthesis of the minor hsps, however. Some hsps are synthesized at lower temperatures only (i.e., below 37 degrees C), whereas others are synthesized only at higher temperatures (i.e., above 37 degrees C). We have extensively examined the characteristics of hsp 35 synthesis, one of the most variably synthesized hsps. This hsp is characteristically synthesized at temperatures above 35 degrees C and usually during the first 40 min of heat shock, after which it becomes undetectable. In some experiments, its synthesis is restimulated during later intervals of heat shock. Hsp 35 is also under developmental regulation. It is not synthesized by heat-shocked embryos until the late blastula to early gastrula stage. After this brief period of inducibility, its synthesis is dramatically reduced in mid- to late gastrulae, but reappears in heat-shocked neurulae. We have previously demonstrated that hsp 35 is related to the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The induction of hsp 35 synthesis is inversely correlated with the constitutive levels of GAPDH specific activity. In this paper we document further correlations between the synthesis of hsp 35 and GAPDH specific activity during early Xenopus development.  相似文献   

14.
 Elevated temperatures induce coral bleaching. To investigate subcellular changes in heat-stressed corals, we examined heat-shock proteins (hsps) and the concentration of calcium in coral cells at elevated temperatures. After heat treatment, three hsps with approximate molecular weights of 70, 60 and 35 kDa were prominent. The 35 kDa heat-shock protein was further demonstrated to be heme oxygenase by immunoblotting, suggesting the involvement of oxidative stress in coral cells during heat treatment. Since the expression of hsps needs the activation of a calcium signal, the change of intracellular calcium concentration in coral cells was examined by a FURA 2 fluorescence method under heat treatment. Intracellular calcium concentration increased at high temperatures with or without the presence of ambient calcium. The extent of the calcium concentration increase was constant for at least 6 hours. This result indicates the existence of an active calcium signal in coral cells at elevated temperatures. Accepted: 4 August 1996  相似文献   

15.
Saccharomyces cerevisiae cells exposed to 43 degrees C (normal being 30 degrees C) exhibit the synthesis of heat shock proteins (hsps). Time course studies indicated that the major hsps (97 kDa, 85 kDa and 70 kDa family) are induced within 10 min. of heat shock and attain maximum amount with two hours of treatment. The viability of cells decreased by 99% when directly frozen into liquid nitrogen. However, a prior heat shock (2 hours) increased the cell survival by 20-30 fold. Such an effect of prior heat shock treatment could be supported by light and electron microscopical studies. Differential scanning calorimetric analysis of whole cells revealed that heat shock treatment decreases the denaturation (delta H) of total cellular proteins. A direct correlation between the degree of hsp inducibility and protection against freezing and thawing injury was observed. Cycloheximide treatment curtailed the synthesis of hsps as well as protection against subsequent freezing. This suggests that prior heat shock treatment protects the cells from freezing injury and, furthermore, that hsps can act as biological cryoprotectants.  相似文献   

16.
17.
Heat shock in barley ( Hordeum vulgare L. cv. Himalaya) aleurone layers induces the synthesis of heat shock proteins (hsps) and suppresses the synthesis and secretion of α-amylase, the principal secretory protein. This is accompanied by the destabilization of α-amylase mRNA and a concomitant dissociation of ER lamellae. In the absence of heat shock α-amylase mRNA is extremely stable (Belanger et al. 1986. Proc. Natl. Acad. Sci. USA 83: 1354–1358). In most organisms there is a direct correlation between the synthesis of hsps and thermotolerance. The ability of hsps to provide thermoprotection to secretory protein synthesis, α-amylase mRNA and ER lamellae was analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of pulse-chased, [35S]-methionine-labeled proteins revealed that the half-life of hsps in barley aleurone cells recovering from heat shock was approximately 12 h. Within approximately 6 h, there was a recovery of α-amylase mRNA and a reformation of ER lamellae. Heat shock protein synthesis was induced by either heat shock (40°C) or arsenite, the cells were allowed to recover for 8 h, then were re-exposed to heat shock. Results from SDS-PAGE showed that, despite the presence of hsps, α-amylase synthesis was suppressed. Northern blot hybridizations showed that α-amylase mRNA levels were reduced in heat-shocked tissues. Transmission electron microscopy demonstrated that ER lamellar structures were dissociated. The synthesis of hsps did not enable barley aleurone cells to sustain the synthesis of any proteins at lethal temperature. In contrast, similar conditions established thermotolerance and provided thermoprotection to protein synthesis in germinating barley embryos. Our findings suggest that the aleurone layer does not become thermotolerant following the induction of hsp synthesis.  相似文献   

18.
Summary The response to stresses produced by changes in the fermentation conditions ofClostridium acetobutylicum in continuous culture was determined under acid- and solvent-producing conditions. Using a phosphate-limited chemostat it was found that specificheatshockproteins (hsp 73, hsp 72 [Dnak], hsp 67 [GroEL], hsp 17 and hsp 14) were synthesized at elevated levels during the shift from acid to solvent formation. The induction of these stress proteins was observed before acetone and butanol were detected in the medium and was therefore not a response to these solvents present in the medium. Simultaneously with the induction of hsps, changes in the synthesis rates of other cellular proteins were observed. Synthesis of proteins associated with the acid production phase decreased and of proteins correlated with the solvent production phase increased. Some hsps, including the DnaK- and GroEL-similar proteins, hsp 73 and hsp 21, were also induced by a change in the growth rate and/or the pH. The analysis of the general regulation of the heat shock response inC. acetobutylicum revealed that the induction of at least 15 hsps after a temperature up-shift was transient and that two temporal classes of hsps could be distinguished. The synthesis of one group of hsps reached a maximum after 6 min and another around 11 min after the temperature upshift and returned to steady-state levels 30 to 40 min after the shock.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号