首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants him1, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The him1 and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   

2.
The present study aims to investigate the role of radiation sensitive 52 (RAD52) and high-affinity DNA binding factor 1 (HDF1) DNA repair genes on the life span of budding yeasts during chronological aging. Wild type (wt) and rad52, hdf1, and rad52 hdf1 mutant Saccharomyces cerevisiae strains were used. Chronological aging and survival assays were studied by clonogenic assay and drop test. DNA damage was analyzed by electrophoresis after phenol extraction. Mutant analysis, colony forming units and the index of respiratory competence were studied by growing on dextrose and glycerol plates as a carbon source. Rad52 and rad52 hdf1 mutants showed a gradual decrease in surviving fraction in relation to wt and hdf1 mutant during aging. Genomic DNA was spontaneously more degraded during aging, mainly in rad52 mutants. This strain showed an increased percentage of revertant colonies. Moreover, all mutants showed a decrease in the index of respiratory competence during aging. The inactivation of RAD52 leads to premature chronological aging with an increase in DNA degradation and mutation frequency. In addition, RAD52 and HDF1 contribute to maintain the metabolic state, in a different way, during chronological aging. The results obtained could have important implications in the chronobiology of aging.  相似文献   

3.
4.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9Δ were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to γ-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to γ-radiation and UV light; mutations rad9Δ and rad24Δ were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   

5.

Main conclusion

Paper-bagging treatment can transform non-transcribed MdMYB1 - 2 and MdMYB1 - 3 alleles into transcribed alleles through epigenetic regulations, resulting in the red pigmentation of a normally non-red apple cultivar ‘Mutsu.’ Anthocyanin biosynthesis in apples is regulated by MdMYB1/A/10, an R2R3-Type MYB gene. ‘Mutsu,’ a triploid apple cultivar harboring non-transcribed MdMYB1-2 and MdMYB1-3 alleles, retains green skin color under field conditions. However, it can show red/pink pigmentation under natural or artificial ultraviolet-B (UV-B) light exposure after paper-bagging and bag removal treatment. In the present study, we found that in ‘Mutsu,’ paper bagging-induced red pigmentation was due to the activation of non-transcribed MdMYB1-2/-3 alleles, which triggered the expression of downstream anthocyanin biosynthesis genes in a UV-B-dependent manner. By monitoring the epigenetic changes during UV-B-induced pigmentation, no significant differences in DNA methylation and histone modifications in the 5′ upstream region of MdMYB1-2/-3 were recorded between the UV-B-treated fruit skin (red) and the fruit skin treated only by white light (green). In contrast, bag treatment lowered the DNA methylation in this region of MdMYB1-2/-3 alleles. Similarly, higher levels of histone H3 acetylation and trimethylation of H3 tail at lysine 4, and lower level of trimethylation of H3 tail at lysine 27 were observed in the 5′ upstream region of MdMYB1-2/-3 in the skin of the fruit immediately after bag removal. These results suggest that bagging treatment can induce epigenetic changes, facilitating the binding of trans factor(s) to MdMYB1-2/-3 alleles, resulting in the activation of these MYBs after bag removal.
  相似文献   

6.
7.
It is known that somatic mutations arising during animal growth and ageing contribute to the development of neurodegenerative and other animal diseases. For plants, several studies showed that small-scale somatic DNA mutations accumulated during Arabidopsis life cycle. However, there is a lack of data on the influence of environmental stresses on somatic DNA mutagenesis in plants. In this study, we analyzed the effects of ultraviolet C (UV-C) irradiation, high soil salinity, and cadmium (CdI3) stresses on the level of small-scale somatic DNA mutations in Arabidopsis thaliana. The number of DNA mutations was examined in the Actin2 3′UTR (Actin-U1), ITS1-5.8rRNA-ITS2 (ITS), and ribulose-1,5-biphosphate carboxylase/oxygenase (rbcL) DNA regions. We found that somatic mutation levels considerably increased in CdI3-treated Arabidopsis plants, while the mutation levels declined in the UV-C- and NaCl-treated A. thaliana. Cadmium is a mutagen that is known to inhibit DNA repair processes. The detected stress-induced alterations in somatic DNA mutation levels were accompanied by markedly increased expression of base excision repair genes (AtARP, AtDME, AtDML2, AtDML3, AtMBD4, AtROS, AtUNG, and AtZDP), nucleotide excision repair genes (AtDDB1a, AtRad4, and AtRad23a), mismatch repair genes (AtMSH2, AtMSH3, and AtMSH7), and photoreactivation genes (AtUVR2, AtUVR3). Thus, the results demonstrated that UV-C, high soil salinity, and cadmium stresses influence both the level of DNA mutations and expression of DNA repair genes. Salt- and UV-induced activation of DNA repair genes could contribute to the stress-induced decrease in somatic mutation level.  相似文献   

8.
9.
10.
Vaginal commensal lactobacilli are considered to contribute significantly to the control of vaginal microbiota by competing with other microflora for adherence to the vaginal epithelium and by producing antimicrobial compounds. However, the molecular mechanisms of symbiotic prokaryotic-eukaryotic communication in the vaginal ecosystem remain poorly understood. Here, we showed that both DNA methylation and histone modifications were associated with expression of the DEFB1 gene, which encodes the antimicrobial peptide human β-defensin-1, in vaginal keratinocyte VK2/E6E7 cells. We investigated whether exposure to Lactobacillus gasseri and Lactobacillus reuteri would trigger the epigenetic modulation of DEFB1 expression in VK2/E6E7 cells in a bacterial species-dependent manner. While enhanced expression of DEFB1 was observed when VK2/E6E7 cells were exposed to L. gasseri, treatment with L. reuteri resulted in reduced DEFB1 expression. Moreover, L. gasseri stimulated the recruitment of active histone marks and, in contrast, L. reuteri led to the decrease of active histone marks at the DEFB1 promoter. It was remarkable that distinct histone modifications within the same promoter region of DEFB1 were mediated by L. gasseri and L. reuteri. Therefore, our study suggested that one of the underlying mechanisms of DEFB1 expression in the vaginal ecosystem might be associated with the epigenetic crosstalk between individual Lactobacillus spp. and vaginal keratinocytes.  相似文献   

11.
12.

Objective

Around one-fourth of the Komagataella phaffii genes encode hypothetical proteins with unknown functions. However, lack of powerful tools for genetic screening in K. phaffii significantly limits the functional analysis of these unknown genes. Transposon mutagenesis has been utilized as an insertional mutagenesis tool in many other organisms and would be extremely valuable if it could be applied in K. phaffii.

Results

In this study, we investigated in K. phaffii the transposition activity and efficiency of piggyBac (PB) transposon, a DNA transposon from the cabbage looper moth Trichoplusia ni through the integrated-plasmid system. We also designed a binary-plasmid system which could generate stable mutants. Finally we evaluated the quality of this mutagenesis system by a simple screening for functional genes involved in K. phaffii carbon catabolite repression.

Conclusions

Our results demonstrate that PB-mediated mutagenesis could be a feasible and useful tool for functional gene screening in K. phaffii.
  相似文献   

13.
Expression and methylation patterns of genes encoding DNA methyltransferases and their functionally related proteins were studied in organs of Arabidopsis thaliana plants. Genes coding for the major maintenance-type DNA methyltransferases, MET1 and CMT3, and the major de novo-type DNA methyltransferase, DRM2, are actively expressed in all organs. Similar constitutively active expression was observed for genes encoding their functionally related proteins, a histone H3K9 methyltransferase KYP and a catalytically non-active protein DRM3. Expression of the MET1 and CMT3 genes is significantly lower in developing endosperm compared with embryo. Vice versa, expression of the MET2a, MET2b, MET3, and CMT2 genes in endosperm is much more active compared with embryo. A special maintenance DNA methylation system seems to operate in endosperm. The DNMT2 and N6AMT genes encoding putative methyltransferases are constitutively expressed at low levels. CMT1 and DRM1 genes are expressed rather weakly in all investigated organs. Most of the studied genes have methylation patterns conforming to the “body-methylated gene” prototype. A peculiar feature of the MET family genes is methylation at all three possible site types (CG, CHG, and CHH). The most weakly expressed among genes of their respective families, CMT1 and DRM1, are practically unmethylated. The MET3 and N6AMT genes have unusual methylation patterns, promoter region, and most of the gene body devoid of any methylation, and the 3'-end proximal part of the gene body is highly methylated.  相似文献   

14.
DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome from transposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins are members of a class of proteins that bind to methylated DNA. The Arabidopsis thaliana genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions of most of these proteins are still not clear. In the present study, we identified four proteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-localized with AtMBD6 in the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physically interacts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of genomic DNA methylation in the atmbd6, atrps2c and atntf2 mutants, using methylation-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and other targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 also interacts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM.  相似文献   

15.
16.
Neurofibromatosis type 1 (NF1), a neuroectodermal disorder, is caused by germline mutations in the NF1 gene. NF1 affects approximately 1/3,000 individuals worldwide, with about 50% of cases representing de novo mutations. Although the NF1 gene was identified in 1990, the underlying gene mutations still remain undetected in a small but obdurate minority of NF1 patients. We postulated that in these patients, hitherto undetected pathogenic mutations might occur in regulatory elements far upstream of the NF1 gene. In an attempt to identify such remotely acting regulatory elements, we reasoned that some of them might reside within DNA sequences that (1) have the potential to interact at distance with the NF1 gene and (2) lie within a histone H3K27ac-enriched region, a characteristic of active enhancers. Combining Hi-C data, obtained by means of the chromosome conformation capture technique, with data on the location and level of histone H3K27ac enrichment upstream of the NF1 gene, we predicted in silico the presence of two remotely acting regulatory regions, located, respectively, approximately 600 kb and approximately 42 kb upstream of the NF1 gene. These regions were then sequenced in 47 NF1 patients in whom no mutations had been found in either the NF1 or SPRED1 gene regions. Five patients were found to harbour DNA sequence variants in the distal H3K27ac-enriched region. Although these variants are of uncertain pathological significance and still remain to be functionally characterized, this approach promises to be of general utility for the detection of mutations underlying other inherited disorders that may be caused by mutations in remotely acting regulatory elements.  相似文献   

17.

Key message

Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1.

Abstract

Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
  相似文献   

18.
The wild-type Japanese morning glory [Ipomoea nil (L.) Roth.] exhibits blue flowers with red stems, and spontaneous r mutants display white flowers with green stems. We have identified two r mutations, r1-1 and r1-2, that are caused by insertions of Tpn1-related DNA transposable elements, Tpn3 (5.6 kb) and Tpn6 (4.7 kb), respectively, into a unique intron of the CHS-D gene, which is responsible for flower and stem pigmentation. Both Tpn3 and Tpn6, which belong to the En/Spm or CACTA superfamily, are nonautonomous elements lacking transposase genes but containing unrelated cellular DNA segments including exons and introns. Interestingly, r1-2 contains an additional 4-bp insertion at the Tpn3 integration site in r1-1, presumably a footprint caused by the excision of Tpn3. The results strengthen the previous notion that Tpn1 and its relatives are major spontaneous mutagens for generating various floriculturally important traits in I. nil. Since I. nil has an extensive history of genetic studies, molecular identification of classical spontaneous mutations would also facilitate reinterpretation of the abundant classical genetic data available.  相似文献   

19.

Key message

A selection-free, highly efficient targeted mutagenesis approach based on a novel ZFN monomer arrangement for genome engineering in tomato reveals plant trait modifications.

Abstract

How to achieve precise gene targeting in plants and especially in crops remains a long-sought goal for elucidating gene function and advancing molecular breeding. To address this issue, zinc finger nuclease (ZFN)-based technology was developed for the Solanum lycopersicum seed system. A ZFN architecture design with an intronic sequence between the two DNA recognition sites was evaluated for its efficiency in targeted gene mutagenesis. Custom engineered ZFNs for the developmental regulator LEAFY-COTYLEDON1-LIKE4 (L1L4) coding for the β subunit of nuclear factor Y, when transiently expressed in tomato seeds, cleaved the target site and stimulated imperfect repair driven by nonhomologous end-joining, thus, introducing mutations into the endogenous target site. The successful in planta application of the ZFN platform resulted in L1L4 mutations which conferred heterochronic phenotypes during development. Our results revealed that sequence changes upstream of the DNA binding domain of L1L4 can lead to phenotypic diversity including fruit organ. These results underscore the utility of engineered ZFN approach in targeted mutagenesis of tomato plant which may accelerate translational research and tomato breeding.
  相似文献   

20.

Background

Double-strand breakage of chromosomal DNA is obviously a serious threat to cells because various activities of the chromosome depend on its integrity. However, recent experiments suggest that such breakage may occur frequently during "normal" growth in various organisms – from bacteria through vertebrates, possibly through arrest of a replication fork at some endogenous DNA damage.

Results

In order to learn how the recombination processes contribute to generation and processing of the breakage, large (> 2000 kb) linear forms of Escherichia coli chromosome were detected by pulsed-field gel electrophoresis in various recombination-defective mutants. The mutants were analyzed in a rich medium, in which the wild-type strain showed fewer of these huge broken chromosomes than in a synthetic medium, and the following results were obtained: (i) Several recB and recC null mutants (in an otherwise rec+ background) accumulated these huge linear forms, but several non-null recBCD mutants (recD, recC1001, recC1002, recC1003, recC1004, recC2145, recB2154, and recB2155) did not. (ii) In a recBC sbcA background, in which RecE-mediated recombination is active, recA, recJ, recQ, recE, recT, recF, recO, and recR mutations led to their accumulation. The recJ mutant accumulated many linear forms, but this effect was suppressed by a recQ mutation. (iii) The recA, recJ, recQ, recF and recR mutations led to their accumulation in a recBC sbcBC background. The recJ mutation showed the largest amount of these forms. (iv) No accumulation was detected in mutants affecting resolution of Holliday intermediates, recG, ruvAB and ruvC, in any of these backgrounds.

Conclusion

These results are discussed in terms of stepwise processing of chromosomal double-strand breaks.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号