首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungal microbiota of bloomy-rind cheeses, such as Camembert, forms a complex ecosystem that has not been well studied, and its monitoring during the ripening period remains a challenge. One limitation of enumerating yeasts and molds on traditional agar media is that hyphae are multicellular structures, and colonies on a petri dish rarely develop from single cells. In addition, fungi tend to rapidly invade agar surfaces, covering small yeast colonies and resulting in an underestimation of their number. In this study, we developed a real-time quantitative PCR (qPCR) method using TaqMan probes to quantify a mixed fungal community containing the most common dairy yeasts and molds: Penicillium camemberti, Geotrichum candidum, Debaryomyces hansenii, and Kluyveromyces lactis on soft-cheese model curds (SCMC). The qPCR method was optimized and validated on pure cultures and used to evaluate the growth dynamics of a ripening culture containing P. camemberti, G. candidum, and K. lactis on the surface of the SCMC during a 31-day ripening period. The results showed that P. camemberti and G. candidum quickly dominated the ecosystem, while K. lactis remained less abundant. When added to this ecosystem, D. hansenii completely inhibited the growth of K. lactis in addition to reducing the growth of the other fungi. This result was confirmed by the decrease in the mycelium biomass on SCMC. This study compares culture-dependent and qPCR methods to successfully quantify complex fungal microbiota on a model curd simulating Camembert-type cheese.  相似文献   

2.
Many years of research has confirmed a wide distribution of anamorphous ascomycete yeasts in the phyllosphere of diverse plants of the Moscow oblast. Based on the standard morphological and physiological criteria, on the results of restriction analysis of the 5.8S-ITS rDNA region, and on the sequencing of the D1D2 region of 26S rDNA, these yeasts were identified as Candida oleophila Montrocher. Previous isolation of this species has been rare, possibly due to its incorrect identification. This species, together with phytobiotic basidiomycete yeasts, was shown to be dominant in the yeast epiphytic communities on the surface parts of plants. The relative abundance of C. oleophila is highest on plant fruits and increases significantly by the end of the vegetation period. Wide occurrence of this yeast species on fruits and in the phyllosphere may be related to its ability to compete with rapidly growing phytopathogenic fungi.  相似文献   

3.
Many years of research has confirmed a wide distribution of anamorphous ascomycete yeasts in the phyllosphere of diverse plants of Moscow and the Moscow oblast. Based on the standard morphological and physiological criteria, on the results of restriction analysis of the 5.8S-ITS rDNA region, and on the sequencing of the D1D2 region of 26S rDNA, these yeasts were identified as Candida oleophila Montrocher. Previous isolation of this species has been rare, possibly due to its incorrect identification. This species, together with phytobiotic basidiomycete yeasts, was shown to be dominant in the yeast epiphytic communities on the surface parts of plants. The relative abundance of C. oleophila is highest on plant fruits and increases significantly by the end of the vegetation period. Wide occurrence of this yeast species on fruits and in the phyllosphere may be related to its ability to compete with rapidly growing phytopathogenic fungi.  相似文献   

4.
Two yeast strains, the cells of which contained xylose and Q-10 as the major ubiquinone, were isolated from a plant leaf collected in Taiwan. These yeasts were found to represent two new species of the genus Bullera in the Hymenomycetes. Identification was based on the sequence analysis of the 18S rDNA, the internal transcribed spacer (ITS) regions and the D1/D2 domain of 26S rDNA. The yeasts are named Bullera melastomae sp. nov. and Bullera formosana sp. nov. In the phylogenetic trees based on 18S rDNA and D1/D2 domain of 26S rDNA sequences, these two species constitute a cluster connected with Dioszegia cluster in the Cryptococcus luteolus lineage.  相似文献   

5.
Temperature gradient gel electrophoresis (TGGE) was employed for the assessment of yeast diversity in the estuary of the Tagus river (Portugal). The molecular detection of yeasts was carried out directly from water samples and, in parallel, a cultivation approach by means of an enrichment step was employed. A nested PCR was employed to obtain a fungal amplicon containing the D2 domain of the 26S rRNA gene. For identification the TGGE bands were extracted, re-amplified, and sequenced. Fourteen fungal taxa were detected and all except one were yeasts. Most yeast sequences corresponded to members of the Ascomycota and only three belonged to the Basidiomycota. Five yeasts (four ascomycetes and one basidiomycete) could not be identified to the species level due to the uniqueness of their sequences. The number of species detected after enrichment was higher than the number of taxa found using the direct detection method. This suggests that some yeast populations are present in densities that are below the detection threshold of the method. With respect to the analysis of the yeast community structure, our results indicate that the dominant populations belong to Debaryomyces hansenii, Rhodotorula mucilaginosa, Cryptococcus longus, and to an uncultured basidiomycetous yeast phylogenetically close to Cr. longus. The combined analysis of direct detection and cultivation approaches indicates a similar community structure at the two sampled sites since nine species were present at both localities.  相似文献   

6.
Three strains (AP19, AP19-4 and AP19-6) of a novel yeast species were isolated from soil from the Singareni coal mines, Andhra Pradesh, India. They were morphologically, physiologically and phylogenetically identical and produced one to four spherical ascospores per ascus. Phylogenetic analysis using the D1/D2 variable domain of the large-subunit rRNA gene indicated that the closest relative of these strains is Debaryomyces etchellsii (2.6% divergence). Other species related to these strains are D. mycophilus (5.1% divergence) and species of the D. hansenii cluster (4.9-5.6% divergence). The novel species differs by 20 and 15 physiological tests from D. etchellsii and D. mycophilus, respectively. Phylogenetic analysis of the internal transcribed spacer (ITS) region also indicated that strains of the new species are related to D. etchellsii (7.7% divergence), followed by species of the D. hansenii cluster (9-10% divergence). In the small-subunit rRNA gene sequences, they differed from D. etchellsii by seven substitutions and one insertion or deletion of a base in a sequence (indel) and from D. mycophilus by 17 substitutions and 1 indel. The physiological, biochemical and molecular data suggest that these strains belong to a novel species, for which we propose the name Debaryomyces singareniensis sp. nov. The type strain of AP19(T) (=MTCC 7061(T)=CBS 10405(T)). The Mycobank number of the new species is MB510046.  相似文献   

7.
Yeast-like symbiotes (YLS) are endosymbionts that are intimately associated with the growth, development, reproduction of their host, the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). However, it is unclear how many species of YLS are found within N. lugens, and how they are related to each other. Traditional methods or simple amplification based on 18S rDNA sequence does not reliably identify new species quickly and efficiently. Therefore, a novel nested PCR-denaturing gradient gel electrophoresis (DGGE) strategy was developed in this article to analyze the YLS of brown planthopper using a nested PCR protocol that involved the 18S rDNA gene and the 5.8S–ITS gene using fungal universal primers. The nested PCR protocol was developed as follows: firstly, the 18S rDNA gene, and 5.8S–ITS gene were amplified using fungal universal primers. Subsequently, these products were used as a template in a second PCR with primers ITS1GC–ITS2, ITS1FGC–ITS2, and NFGC-NR, which was suitable for DGGE. Using this highly specific molecular approach, we found several previously detected fungi: Noda, Pichia guilliermondii, Candida sp., and some previously undetected fungi, such as Saccharomycetales sp., Debaryomyces hansenii, and some uncultured fungi. In conclusion, the nested PCR system developed in this study, coupled with DGGE fingerprinting, offers a new tool for uncovering fungal endosymbiont diversity within planthoppers.  相似文献   

8.
《FEMS yeast research》2005,5(3):253-261
Temperature gradient gel electrophoresis (TGGE) was employed for the assessment of yeast diversity in the estuary of the Tagus river (Portugal). The molecular detection of yeasts was carried out directly from water samples and, in parallel, a cultivation approach by means of an enrichment step was employed. A nested PCR was employed to obtain a fungal amplicon containing the D2 domain of the 26S rRNA gene. For identification the TGGE bands were extracted, re-amplified, and sequenced. Fourteen fungal taxa were detected and all except one were yeasts. Most yeast sequences corresponded to members of the Ascomycota and only three belonged to the Basidiomycota. Five yeasts (four ascomycetes and one basidiomycete) could not be identified to the species level due to the uniqueness of their sequences. The number of species detected after enrichment was higher than the number of taxa found using the direct detection method. This suggests that some yeast populations are present in densities that are below the detection threshold of the method. With respect to the analysis of the yeast community structure, our results indicate that the dominant populations belong to Debaryomyces hansenii, Rhodotorula mucilaginosa, Cryptococcus longus, and to an uncultured basidiomycetous yeast phylogenetically close to Cr. longus. The combined analysis of direct detection and cultivation approaches indicates a similar community structure at the two sampled sites since nine species were present at both localities.  相似文献   

9.
Samples of microorganisms from the surface of constructions of Mir Space Station (Mir SS) were taken and examined after 13 years of operation. The following microorganisms were isolated and identified: 12 fungal species belonging to the genera Penicillium, Aspergillus, Cladosporium, and Aureobasidium; 3 yeast species belonging to the genera Debaryomyces, Candida, and Rhodotorula; and 4 bacterial species belonging to the genera Bacillus, Myxococcus, and Rhodococcus. The predominant species in all samples was Penicillium chrisogenum. It was shown that the fungi isolated could damage polymers and induce corrosion of aluminum-magnesium alloys. We commenced a study of microbial degraders on constructions of the Russian section of the International Space Station (RS ISS). Twenty-six species of fungi, bacteria, yeasts, and actinomycetes, known as active biodegraders, were identified in three sample sets taken at intervals. We founded a collection of microorganisms surviving throughout space flights. This collection can be used to test spacecraft production materials, in order to determine their resistance to biodegradation.  相似文献   

10.
The regulation of Ace2 and morphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae, we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Pneumocystis spp.  相似文献   

11.
Two strains of anamorphic yeasts isolated from insect frass collected in southern Thailand were assigned to the genus Candida based on the conventional taxonomic criteria used for yeast classification. In the phylogenetic tree based on the D1/D2 domain of the 26S rDNA, these strains are distant from the known species of yeasts and considered to represent two different new species. They are named Candida kazuoi sp. nov. and Candida hasegawae sp. nov.  相似文献   

12.
The microbial communities in milks from one herd were evaluated during 1-year of lactation, using molecular methods to evaluate their stability and the effect of breeding conditions on their composition. The diversity of microbial communities was measured using two approaches: molecular identification by 16S and 18S rDNA sequencing of isolates from counting media (two milks), and direct identification using 16S rDNA from clone libraries (six milks). The stability of these communities was evaluated by counting on selective media and by Single Strand Conformation Polymorphism (SSCP) analysis of variable region V3 of the 16S rRNA gene and variable region V4 of the 18S rRNA gene. One hundred and eighteen milk samples taken throughout the year were analyzed. Wide diversity among bacteria and yeasts in the milk was revealed. In addition to species commonly encountered in milk, such as Lactococcus lactis, Lactococcus garvieae, Enterococcus faecalis, Lactobacillus casei, Leuconostoc mesenteroides, Staphylococcus epidermidis, Staphylococcus simulans, Staphylococcus caprae, Staphylococcus equorum, Micrococcus sp., Kocuria sp., Pantoea agglomerans and Pseudomonas putida, sequences were affiliated to other species only described in cheeses, such as Corynebacterium variabile, Arthrobacter sp., Brachybacterium paraconglomeratum, Clostridium sp. and Rothia sp. Several halophilic species atypical in milk were found, belonging to Jeotgalicoccus psychrophilus, Salinicoccus sp., Dietza maris, Exiguobacterium, Ornithinicoccus sp. and Hahella chejuensis. The yeast community was composed of Debaryomyces hansenii, Kluyveromyces lactis, Trichosporon beigelii, Rhodotorula glutinis, Rhodotorula minuta, Candida pararugosa, Candida intermedia, Candida inconspicua, Cryptococcus curvatus and Cryptococcus magnus. The analyses of microbial counts and microbial SSCP profiles both distinguished four groups of milks corresponding to four periods defined by season and feeding regime. The microbial community was stable within each period. Milks from winter were characterized by Lactococcus and Pseudomonas, those from summer by P. agglomerans and Klebsiella and those from autumn by Chryseobacterium indologenes, Acinetobacter baumanii, Staphylococcus, Corynebacteria and yeasts. However, the composition of the community can vary according to factors other than feeding. This study opens new investigation fields in the field of raw milk microbial ecology.  相似文献   

13.
Filamentous fungi and yeast from the genera Saccharomyces, Penicillium, Aspergillus, and Fusarium are well known for their impact on our life as pathogens, involved in food spoilage by degradation or toxin contamination, and also for their wide use in biotechnology for the production of beverages, chemicals, pharmaceuticals, and enzymes. The genomes of these eukaryotic micro-organisms range from about 6000 genes in yeasts (S. cerevisiae) to more than 10,000 genes in filamentous fungi (Aspergillus sp.). Yeast and filamentous fungi are expected to share much of their primary metabolism; therefore much understanding of the central metabolism and regulation in less-studied filamentous fungi can be learned from comparative metabolite profiling and metabolomics of yeast and filamentous fungi. Filamentous fungi also have a very active and diverse secondary metabolism in which many of the additional genes present in fungi, compared with yeast, are likely to be involved. Although the 'blueprint' of a given organism is represented by the genome, its behaviour is expressed as its phenotype, i.e. growth characteristics, cell differentiation, response to the environment, the production of secondary metabolites and enzymes. Therefore the profile of (secondary) metabolites--fungal chemodiversity--is important for functional genomics and in the search for new compounds that may serve as biotechnology products. Fungal chemodiversity is, however, equally efficient for identification and classification of fungi, and hence a powerful tool in fungal taxonomy. In this paper, the use of metabolite profiling is discussed for the identification and classification of yeasts and filamentous fungi, functional analysis or discovery by integration of high performance analytical methodology, efficient data handling techniques and core concepts of species, and intelligent screening. One very efficient approach is direct infusion Mass Spectrometry (diMS) integrated with automated data handling, but a full metabolic picture requires the combination of several different analytical techniques.  相似文献   

14.

Non-albicans Candida species and other rare yeasts have emerged as major opportunistic pathogens in fungal infections. Identification of opportunistic yeasts in developing countries is mainly performed by phenotypic assay, which are time-consuming and prone to errors. The aim of the present study was to evaluate PCR-RFLP as a routinely used identification technique for the most clinically important Candida species in Iran and make a comparison with a novel multiplex PCR, called 21-plex PCR. One hundred and seventy-three yeast isolates from clinical sources were selected and identified with sequence analysis of the D1/D2 domains of rDNA (LSU rDNA) sequencing as the gold standard method. The results were compared with those obtained by PCR-RFLP using MspI restriction enzyme and the 21-plex PCR. PCR-RFLP correctly identified 93.4% of common pathogenic Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and P. kudriavsevii (=?C. krusei)) and was able to identify 45.5% of isolates of the uncommon yeast species compared to the D1/D2 rDNA sequencing. Compared with PCR-RFLP, all common Candida species and 72.7% of uncommon yeast species were correctly identified by the 21-plex PCR. The application of the 21-plex PCR assay as a non-sequence-based molecular method for the identification of common and rare yeasts can reduce turnaround time and costs for the identification of clinically important yeasts and can be applied in resource-limited settings.

  相似文献   

15.
[目的]研究云南5个地区(晋宁、祥云、程海、泸沽湖、洱海)的戟叶酸模(Rumex hastatus)花中的酵母菌和类酵母.[方法]采用涂布平板法对5个地区的戟叶酸模花中酵母菌和类酵母进行分离,通过26S rDNA Dl/D2区域序列分析并结合形态观察对分离获得的酵母菌和类酵母进行鉴定;采用胞外酶定性筛选培养基进行产酶筛选;用苏丹黑B染色法筛选产油脂菌株.[结果]从戟叶酸模花中分离得到82株酵母菌和99株类酵母;82株酵母菌鉴定为6个属16个种和1个潜在新种,99株类酵母鉴定为短梗霉属(Aureobasidium)的普鲁兰类酵母(A.pullulans)及3个变种;戟叶酸模花中的优势属是类酵母短梗霉属,其次为红酵母属(Rhodotorula)和隐球酵母属(Cryptococcus);筛选到134株具有产胞外酶活性和83株产油脂的酵母菌和类酵母.[结论]研究结果显示5个地区的戟叶酸模花中酵母菌和类酵母种类多样性较为丰富,并具有产淀粉酶、蛋白酶、纤维素酶、脂肪酶和油脂的特点,有潜在的应用前景.  相似文献   

16.
Relative Incidence of Ascomycetous Yeasts in Arctic Coastal Environments   总被引:1,自引:0,他引:1  
Previous studies of fungi in polar environments have revealed a prevalence of basidiomycetous yeasts in soil and in subglacial environments of polythermal glaciers. Ascomycetous yeasts have rarely been reported from extremely cold natural environments, even though they are known contaminants of frozen foods. Using media with low water activity, we have isolated various yeast species from the subglacial ice of four glaciers from the coastal Arctic environment of Kongsfjorden, Spitzbergen, including Debaryomyces hansenii and Pichia guillermondii, with counts reaching 104 CFU L−1. Together with the basidiomycetes Cryptococcus liquefaciens and Rhodotorula mucilaginosa, these yeasts represent the stable core of the subglacial yeast communities. Other glacial ascomycetous species isolated included Candida parapsilosis and a putative new species that resembles Candida pseudorugosa. The archiascomycete Protomyces inouyei has seldom been detected anywhere in the world but was here recovered from ice in a glacier cave. The glacier meltwater contained only D. hansenii, whereas the seawater contained D. hansenii, Debaryomyces maramus, Pichia guilliermondii, what appears to represent a novel species resembling Candida galli and Metschnikowia bicuspidata. Only P. guilliermondii was isolated from sea ice, while snow/ice in the fjord tidal zone included C. parapsilosis, D. hansenii, P. guilliermondii and Metschnikowia zobellii. All of these isolated strains were characterized as psychrotolerant and xero/halotolerant, with the exception of P. inouyei.  相似文献   

17.
Two yeasts, the salt-tolerant Debaryomyces hansenii and the non-tolerant Saccharomyces cerevisiae were grown in basal media (4 m M NaCl) and also a high salinities that produced a similar salt stress in the two species in terms of growth rate reduction (i.e., 1.4 M NaCl for S. cerevisae and 2.7 M NaCl for D. hansenii ). A study was made of the sterol content, the fatty acid composition of the phospholipids, and the permeation of a series of tritiated ethylene glycols of graded molecular weights. On the basis of cell dry weight the amount of total and free sterols increased in both species when cultured at high salinity. Irrespective of growth medium salinity, the molar ratio of free sterols to phospholipids was higher in D. hansenii than in S. cerevisiae . Increased salinity produced only minor changes in the fatty acid composition of the phospholipids in D. hansenii , whereas in S. cerevisiae there was a marked decrease of linolenic acid with a concomitant increase of linoleic acid.
In both yeasts there was an energy linked component in the uptake of ethylene glycol, which component could be inhibited by sodium azide and N -ethylmaleimide. The passive permeability for ethylene-, diethylene- and triethylene glycol increased for both species at increased salinity. This increase was more pronounced for S. cerevisiae than for D. hansenii . Polyethylene glycol of M , 200 as well as higher polyethylene glycols appeared to be excluded or very slowly admitted by the yeasts.  相似文献   

18.
The amplification by PCR of the Intergenic Spacer region (IGS) of rDNA followed by Restriction Fragment Length Polymorphism (RFLP) analysis was evaluated as a potential method for the identification of Debaryomyces hansenii among other yeast species that frequently contaminate Intermediate-Moisture Foods (IMFs). For a first rapid differentiation at the species level, the determination of the IGS-PCR fragment size was found to be a useful approach. The digestion of this region with the enzymes HhaI, HapII and MboI resulted in specific patterns that permit the identification of D. hansenii among other yeast species. This method also permitted the discrimination between the D. hansenii varieties (var. hansenii and var. fabryi) as well as the differentiation of D. hansenii from other species of the genus, such as Debaryomyces pseudopolymorphus or Debaryomyces polymorphus var. polymorphus. The IGS-PCR RFLP method was assayed for the differential detection of D. hansenii in contaminated or spoiled IMF products and compared with traditional identification procedures, resulting in a 100% detection rate for D. hansenii.  相似文献   

19.
Marram grass (Ammophila arenaria L.), a sand-stabilizing plant species in coastal dune areas, is affected by a specific pathosystem thought to include both plant-pathogenic fungi and nematodes. To study the fungal component of this pathosystem, we developed a method for the cultivation-independent detection and characterization of fungi infecting plant roots based on denaturing gradient gel electrophoresis (DGGE) of specifically amplified DNA fragments coding for 18S rRNA (rDNA). A nested PCR strategy was employed to amplify a 569-bp region of the 18S rRNA gene, with the addition of a 36-bp GC clamp, from fungal isolates, from roots of test plants infected in the laboratory, and from field samples of marram grass roots from both healthy and degenerating stands from coastal dunes in The Netherlands. PCR products from fungal isolates were subjected to DGGE to examine the variation seen both between different fungal taxa and within a single species. DGGE of the 18S rDNA fragments could resolve species differences from fungi used in this study yet was unable to discriminate between strains of a single species. The 18S rRNA genes from 20 isolates of fungal species previously recovered from A. arenaria roots were cloned and partially sequenced to aid in the interpretation of DGGE data. DGGE patterns recovered from laboratory plants showed that this technique could reliably identify known plant-infecting fungi. Amplification products from field A. arenaria roots also were analyzed by DGGE, and the major bands were excised, reamplified, sequenced, and subjected to phylogenetic analysis. Some recovered 18S rDNA sequences allowed for phylogenetic placement to the genus level, whereas other sequences were not closely related to known fungal 18S rDNA sequences. The molecular data presented here reveal fungal diversity not detected in previous culture-based surveys.  相似文献   

20.
云南程海湖酵母菌多样性及应用   总被引:1,自引:0,他引:1  
【目的】针对云南丽江永胜县境内程海湖环境的特殊性,研究高原湖泊环境中酵母菌的多样性,初步探索程海湖环境中酵母菌的利用价值。【方法】对程海湖的湖水和其周边土壤样品中的酵母菌进行分离;应用26S rDNA的D1/D2区域序列分析,并结合形态及生理生化指标对分离获得的酵母菌进行鉴定;采用筛选培养基对已鉴定酵母菌进行产酶定性实验,分析高原湖泊中酵母菌的多样性及可应用性。【结果】分离得到酵母菌64株,对其中63株进行鉴定,归属于9个属22个种(包括4个疑似新种或新变种);地霉属Geotrichum和隐球酵母属Cryptococcus是2种环境中的共有属;在产酶活性筛选中发现有9株产胞外酶活性的菌株,其中YM24373既产蛋白酶又可产淀粉酶。【结论】研究结果显示程海湖中酵母菌组成具有较为丰富的多样性,其应用价值值得进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号