首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cellular RNA in Chinese hamster ovary (CHO) cells synchronized in mitosis (M) or G2 phase, as well as in interphase cells subjected to hyperthermia (42 degrees C, 10 min), was stained with acridine orange (AO), ethidium bromide (EB), or pyronin Y (PY) and the resultant fluorescence was measured by flow cytometry. Total RNA content detected after staining with AO increased in M as compared to G2-phase cells, consistent with continued RNA synthesis during G2 phase. The content of double-stranded RNA, stained with EB (after DNase treatment), was also somewhat higher in M cells. In contrast, the stainability of RNA with PY decreased by 27% in M- compared to G2-phase cells. Furthermore, a decrease in stainability of RNA with PY was observed in G2 cells compared to cells in G1 phase. In separate experiments, RNA stainability with AO or EB was generally unaffected when interphase CHO cells were exposed to 42 degrees C for 10 min, though this same treatment resulted in a 26% decrease in RNA stainability with PY. The decreased PY stainability of cellular RNA in M or heat-treated cells was observed at a relatively narrow range of dye concentration (1.0-2.0 micrograms/ml). The observed hypochromicity of RNA coincides with dissociation of polyribosomes into single ribosomes known to occur during mitosis and following exposure to hyperthermia. It is presumed that the phenomenon involves selective denaturation and condensation of ribosomal (r) RNA by PY in single ribosomes which does not occur in polyribosomes. While the molecular mechanisms responsible for stabilization of rRNA in polyribosomes preventing its denaturation and condensation by PY are unknown, PY appears to be a sensitive probe that can be used to detect and study these changes in rRNA confirmation in situ.  相似文献   

2.
H M Shapiro 《Cytometry》1981,2(3):143-150
The addition of RNA content estimation to flow cytometric measurement of DNA content provides valuable information concerning cells' transitions between quiescent and proliferative states. Equilibrium staining methods employing acridine orange have been used for DNA/RNA content measurement but are difficult to apply to intact cells and impractical for use in conjunction with fluorescent antibodies or ligands for demonstration of cell surface structures. I have used a combination of Hoechst 33342 (HO342) and pyronin Y (PY) to stain intact cells for DNA/RNA content estimation with a dual source flow cytometer using UV and blue-green or green excitation, measuring HO342 fluorescence at 430--470 nm and PY fluorescence at 590--650 nm. Results obtained with cultured cells and stimulated lymphocytes are in good agreement with those obtained using acridine orange for DNA/RNA staining; about half of the PY fluorescence can be removed from ethanol-fixed cells stained with HO342 and PY by RNAse digestion. The HO342/PY method can be combined with fluorescein immunofluorescence for detection of cell surface markers. HO342 can be combined with other tricyclic heteroaromatic dyes for DNA/RNA estimation; the combination of HO342 and oxazine 1 can be excited in a dual source instrument using a mercury arc lamp and a helium-neon laser. The staining procedure is simple; cells in medium are incubated with 5 microM HO342 at 37 degrees C for 45 min, 5 microM PY (or oxazine 1) is then added and cells are analyzed without washing after an additional 45 min incubation. Suitability of these dye combinations for vital cell staining and sorting remains to be determined.  相似文献   

3.
Microscopic observation of fluorescently-stained intracellular molecules within a living cell provides a straightforward approach to understanding their temporal and spatial relationships. However, exposure to the excitation light used to visualize these fluorescently-stained molecules can be toxic to the cells. Here we describe several important considerations in microscope instrumentation and experimental conditions for avoiding the toxicity associated with observing living fluorescently-stained cells. Using a computer-controlled fluorescence microscope system designed for live observation, we recorded time-lapse, multi-color images of chromosomes and microtubules in living human and fission yeast cells. In HeLa cells, a human cell line, microtubules were stained with rhodamine-conjugated tubulin, and chromosomes were stained with a DNA-specific fluorescent dye, Hoechst33342, or with rhodamine-conjugated histone. In fission yeast cells, microtubules were stained with alpha-tubulin fused with the jellyfish green fluorescent protein (GFP), and chromosomes were stained with Hoechst33342.  相似文献   

4.
Interactions of pyronin Y(G) with nucleic acids   总被引:1,自引:0,他引:1  
Spectral properties of pyronin Y(PY) alone or in complexes with natural and synthetic nucleic acids of various base compositions have been studied in aqueous solution containing 10 or 150 mM NaCl and 5 mM Hepes at pH 7.0. The dimerization constant (KD = 6.27 X 10(3), M-1) and the absorption spectra of the dye in monomeric and dimeric form were established. The complexes of PY with single-stranded (ss) nucleic acids show a hypsochromic shift in absorption, and their fluorescence is quenched by over 90% compared to free dye. In contrast, complexes with double-stranded (ds) RNA or DNA (binding by intercalation) exhibit a bathochromic shift in their absorption (excitation) spectrum, and their fluorescence is correlated with the base composition of the binding site. Namely, guanine quenches fluorescence of PY by up to 90%, whereas A, C, I, T, and U bases exert a rather minor effect on the fluorescence quantum yield of the dye. The intrinsic association constant of the dye to ds RNA (Ki = 6.96 X 10(4), M-1) and to ds DNA (Ki = 1.74 X 10(4), M-1) was measured in 150 mM NaCl; the binding site size was 2-3 base pair for both polymers. Implications of these findings for qualitative and quantitative cytochemistry of nucleic acids are discussed.  相似文献   

5.
BACKGROUND: The cytometric methods of bivariate analysis of cellular RNA versus DNA content have limitations. The method based on the use of metachromatic fluorochrome acridine orange (AO) requires rigorous conditions of the equilibrium staining whereas pyronin Y and Hoechst 33342 necessitate the use of an instrument that provides two-laser excitation, including the ultraviolet (UV) light wavelength. METHODS: Phytohemagglutinin (PHA)-stimulated human lymphocytes were deposited on microscope slides and fixed. DNA and double-stranded (ds) RNA were stained with propidium iodide (PI) and protein was stained with BODIPY 630/650-X or fluorescein isothiocyanate (FITC). Cellular fluorescence was measured with a laser scanning cytometer (LSC). The cells were treated with RNase A and their fluorescence was measured again. The file-merge feature of the LSC was used to record the cell PI fluorescence measurements prior to and after the RNase treatment in list mode, as a single file. The integrated PI fluorescence intensity of each cell after RNase treatment was subtracted from the fluorescence intensity of the same cell measured prior to RNase treatment. This RNase-specific differential value of fluorescence (differential fluorescence [DF]) was plotted against the cell fluorescence measured after RNase treatment or against the protein-associated BODIPY 630/650-X or FITC fluorescence. RESULTS: The scattergrams were characteristic of the RNA versus DNA bivariate distributions where DF represented cellular ds RNA content and fluorescence intensity of the RNase-treated cells, their DNA content. The distributions were used to correlate cellular ds RNA content with the cell cycle position or with protein content. CONCLUSIONS: One advantage of this novel approach based on the recording and plotting of DF is that only the RNase -specific fraction of cell fluorescence is measured with no contribution of nonspecific components (e.g., due to the emission spectrum overlap or stainability of other than RNA cell constituents). Another advantage is the method's simplicity, which ensues from the use of a single dye, the same illumination, and the same emission wavelength detection sensor for measurement of both DNA and ds RNA. The method can be extended for multiparameter analysis of cell populations stained with other fluorochromes of the same-wavelength emission but targeted (e.g., immunocytochemically) for different cell constituents.  相似文献   

6.
The influence of DNA topology on stainability with the externally binding fluorochromes Hoechst 33258 (HO) and mithramycin (MI) was investigated in HeLa nuclei in comparison with the intercalating dye propidium iodide (PI). Changes in DNA topology were induced with a mild DNAse I treatment. Stainability properties of untreated and nuclease-treated nuclei were compared with those of the supercoiled-circular and the relaxed-linear forms of the plasmid pBR322. DNAse-treated nuclei stained with HO showed a higher fluorescence intensity than control samples, independently of the dye concentration, in contrast with the findings obtained with PI. Similar behaviour was observed with the relaxed-linear form of pBR322, compared with the supercoiled-circular molecule. With MI, the stainability of HeLa nuclei did not depend on the DNA topology, whereas the stainability of the plasmid was similar to that of HO. In order to assess whether this discrepancy depended on differences in the availability of DNAse-sensitive sites to the fluorochromes, fluorescence resonance energy transfer (FRET) studies were performed in nuclei stained with HO+PI, or with HO+MI dye pairs. After DNAse I digestion, the relative FRET efficiency between donor (HO) and acceptor molecules (PI or MI) was reduced significantly only when MI was the acceptor. This result may be due to greater stainability of DNAse-sensitive sites with HO than with MI. These findings indicate that DNA stainability with base-specific fluorochromes may be affected by the topology of chromatin regions.  相似文献   

7.
BACKGROUND: Many methods in flow cytometry rely on staining DNA with a fluorescent dye to gauge DNA content. From the relative intensity of the fluorescence signature, one can then infer position in cell cycle, amount of DNA (i.e., for sperm selection), or, as in the case of flow karyotyping, to distinguish individual chromosomes. This work examines the staining of murine thymocytes with a common DNA dye, Hoechst 33342, to investigate nonlinearities in the florescence intensity as well as chromatic shifts. METHODS: Murine thymocytes were stained with Hoechst 33342 and measured in a flow cytometer at two fluorescence emission bands. In other measurements, cells were stained at different dye concentrations, and then centrifuged. The supernatant was then used for a second round of staining to test the amount of dye uptake. Finally, to test for resonant energy transfer, we measured fluorescence anisotropy at two different wavelengths. RESULTS: The fluorescence of cells stained with Hoechst 33342 is a nonlinear process that shows an overall decrease in intensity with increased dye uptake, and spectral shift to the red. Along with the spectral shift of the fluorescence to the longer wavelengths, we document decreases in the fluorescence anisotropy that may indicate resonant energy transfer. CONCLUSIONS: At low concentrations, Hoechst 33342 binds to the minor groove of DNA and shows an increase in fluorescence and a blue shift upon binding. At higher concentrations, at which the dye molecules can no longer bind without overlapping, the blue fluorescence decreases and the red fluorescence increases until there is approximately one dye molecule per DNA base pair. The ratio of the blue fluorescence to the red fluorescence is an accurate indicator of the cellular dye concentration.  相似文献   

8.
A rapid, simple, and reliable flow cytometric method using the histochemical fluorescent stain Hoechst 33342 in presence of the non-ionic detergent Triton X-100 has been reported. The processing of melanoma cell cultures to get nuclei stained with the fluorescent dye was accomplished in one step and within an hour permitted concurrent flow cytometric measurement of cell density and cell cycle analysis. The preparation is stable for more than three weeks at room temperature for flow cytometry. The histograms are reproducible and exhibit a coefficient of variation of less than 2.5% (G1 peak). The cell density measurements varied within +/- 5% limits.  相似文献   

9.
At high binding densities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar- and base-composition) of nucleic acids.  相似文献   

10.
P L Olive  R E Durand 《Cytometry》1987,8(6):571-575
The fluorescent carbocyanine dye 3,3-diheptyloxycarbocyanine [DiOC7(3)], originally described as a membrane potential probe, penetrates poorly into multicell spheroids. Since the dye is retained in the cells following spheroid disaggregation, cells can be selected from different depths within the spheroid using fluorescence-activated cell sorting. Characterization of the binding kinetics, stability, and toxicity of this probe were undertaken, and intercompared with Hoechst 33342. The optimum drug dose for achieving good separation of internal and external cells of spheroids is about tenfold lower than for Hoechst 33342, and like Hoechst, DiOC7(3) is toxic at concentrations at least tenfold higher than those required to produce a good gradient for cell separation. When cells are removed from the stain, cellular fluorescence decreases to half the initial intensity within 2 hours; however, unlike Hoechst, the carbocyanine dye does not transfer between cells.  相似文献   

11.
Hoechst 33342 was injected either intravenously or intraperitoneally into mice which were killed 1 or 24 hr or 7, 14 or 28 days later. Various organs were fixed and paraffin embedded. Visual inspection showed that independently of the route of dye administration or survival time, distinct fluorescence of nuclei was observed in organs other than cerebral cortex. Even formic acid decalcification of bone failed to abolish the fluorescence of osteocytes. In vivo staining with Hoechst 33342 is proposed as an alternative for staining after sectioning. Cells from spleens of Hoechst 33342-injected mice or stained in vitro were injected intramuscularly into mice. Hoechst 33342-stained splenocytes could be found in deparaffinized sections at the site of injection 24 hr later.  相似文献   

12.
Hoechst 33342 was injected either intravenously or intraperitoneally into mice which were killed 1 or 24 hr or 7, 14 or 28 days later. Various organs were fixed and paraffin embedded. Visual inspection showed that independently of the route of dye administration or survival time, distinct fluorescence of nuclei was observed in organs other than cerebral cortex. Even formic acid decalcification of bone failed to abolish the fluorescence of osteocytes. In vivo staining with Hoechst 33342 is proposed as an alternative for staining after sectioning. Cells from spleens of Hoechst 33342-injected mice or stained in vitro were injected intramuscularly into mice. Hoechst 33342-stained splenocytes could be found in deparaffinized sections at the site of injection 24 hr later.  相似文献   

13.
The aim of this study was to evaluate whether or not the differences in chromatin structure between diploid stromal cells or lymphocytes, which are often used as DNA ploidy standard, and aneuploid breast tumor cells can significantly affect the estimates of the DNA index of these tumors. To this end, the DNA content estimates of 34 aneuploid breast tumors, differing in size, degree of differentiation, and presence or absence of estrogen and progesterone receptors and metastases, were compared using four common DNA fluorochromes: DAPI, Hoechst 33342, propidium iodide, and acridine orange. These dyes differ in their mode of interaction with DNA (binding to minor groove or intercalation) and for each of them binding to DNA is restricted to a different degree by nuclear proteins. It was expected, therefore, that if differences in chromatin structure play a role in DNA content estimates, the DNA index of the measured tumors may vary depending on the dye. The cell nuclei were isolated from the tumors using a detergent-based procedure and stained with each of the dyes and the DNA index was estimated using peripheral blood lymphocytes as a DNA content standard. For each of the tumors, the DNA index estimates with all four dyes correlated very well. When the results obtained with individual dyes were compared in pairs, the correlation coefficients (r) of DNA indices were all above 0.96 (correlation at p less than 0.001). The best concordance was seen between specimens stained with Hoechst 33342 and DAPI (r = 0.99), and the least between those stained with Hoechst 33342 and propidium iodide (r = 0.96). The data indicate that DNA content analysis of unfixed nuclei, utilizing the above fluorochromes, is not significantly biased by differences in chromatin structure of the measured cells.  相似文献   

14.
We synthesized dimeric Hoechst dye molecules composed of two moieties of the Hoechst 33258 fluorescent dye phenolic hydroxy groups of which were tethered via pentamethylene, heptamethylene, or triethylene oxide linkers. A characteristic pattern of differential staining of chromosome preparations from human premonocytic leukemia HL60 cells was observed for all the three fluorescent dyes. The most contrast pattern was obtained for the bis-Hoechst analogue with the heptamethylene linker; its quality was comparable with the picture obtained in the case of chromosome staining with 4',6-diamidino-2-phenylindole. The ability to penetrate into the live human fibroblasts was studied for the three bis-Hoechst compounds. The fluorescence intensity of nuclei of live and fixed cells stained with the penta- and heptamethylene-linked bis-Hoechst analogues was found to differ only slightly, whereas the fluorescence of the nuclei of live cells stained with triethylene oxide-linked bis-Hoechst was considerably weaker than that of the fixed cells. The bis-Hoechst molecules are new promising fluorescent dyes that can both differentially stain chromosome preparations and penetrate through cell and nuclear membranes and effectively stain cell nuclei.  相似文献   

15.
Hoechst dyes 33342 and 33258 were used to visualize pronuclei and nuclei of early preimplantation embryos. Murine one-cell zygotes exposed to dye stained rapidly over a range of concentrations (0, 0.02, 0.04, 0.1 or 0.2 micrograms/50 microliter of media). Development to morula and blastocyst in vitro was reduced (39/70, 56%; p less than 0.05) compared to controls (44/57, 77%) but not completely blocked. Porcine and bovine zygotes and embryos could also be stained but required incubation times up to 4 hr. Porcine embryos exposed to Hoechst 33342 had limited (p less than 0.01) in vitro development (29/74, 39%) compared to unstained controls (49/64, 76%). Hoechst dyes stain embryos from different species but suitably adjusted incubation times are required. Limited preimplantation development in vitro may be expected following staining and exposure to ultraviolet light.  相似文献   

16.
Accessibility of mouse testicular and vas deferens (vas) sperm cell DNA to acridine orange, propidium iodide, ellipticine, Hoechst 33342, mithramycin, chromomycin A3, 4'6-diamidino-2-phenylindole (DAPI), and 7-amino-actinomycin D (7-amino-AMD) was determined by flow cytometry. Permeabilized cells were either stained directly or after pretreatment with 0.06 N HCl. For histone-containing tetraploid, diploid, and round spermatid cells, HCl extraction of nuclear proteins caused an approximately sixfold increase of 7-amino-AMD stainability but had no significant effect on DAPI stainability. For these same cell types, the stainability with other intercalating (acridine orange, propidium iodide, ellipticine) and externally binding (Hoechst 33342, mithramycin, chromomycin A3) dyes was increased by 1.6- to 4.0-fold after HCl treatment. In sharp contrast, HCl treatment of vas sperm did not increase the staining level of 7-amino-AMD, DAPI, or propidium iodide but did increase the staining level for the other intercalating dyes (1.3- to 1.5-fold) and external dyes (1.3- to 1.9-fold). Elongated spermatids that contain a mixture of protein types including histones, transition proteins, and protamines demonstrated the greatest variability of staining with respect to type of stain and effect of acid extraction of proteins. In general, for nearly all dyes, the round spermatids had an increased level and tetraploid cells had a decreased level of stainability relative to the same unit DNA content of diploid cells. The observed differential staining is discussed in the context of chromatin alterations related to the unique events of meiosis and protein displacement and replacement during sperm differentiation.  相似文献   

17.
Interaction of cations with nucleic acids (NA) often results in condensation of the product. The driving force of aromatic cation-induced condensation is the cooperative interaction between ligand and single-stranded (ss) NA. This type of reaction is highly specific with regard to the primary and secondary structure of NA, and results in destabilization of the latter. The spectral properties of fluorescent intercalating and non-intercalating ligands [acridine orange, pyronin Y(G), DAPI, Hoechst 33258, and Hoechst 33342]-NA complexes were studied in both the relaxed and condensed form. The changes in absorption, excitation, and fluorescence emission spectra and fluorescence yield that followed the condensation were examined. Although some of these effects can be explained by changes in solvation of the fluorophore and its interaction with NA bases and the solvent, the overall effect of condensation on spectral properties of the complex is unpredictable. In particular, no correlation was found between these effects and the ds DNA binding mode of these ligands. Nevertheless, the spectral data associated with polymer condensation can yield information about the composition and structure of NA and can explain some nonspecific interactions of these probes.  相似文献   

18.
Summary The amounts of nuclear DNA in ten species of seaweeds belonging to the Rhodophyceae, Phaeophyceae, and Chlorophyceae were determined by flow cytometric analysis of nuclei isolated from protoplasts. Genome size was determined from the fluorescence of the nuclei stained with ethidium bromide. The size of the nuclear genome ranged from 0.13 pg per cell in the 1 C population ofUlva rigida to 3.40 pg per cell in the 2 C population ofSphacelaria sp. GC% analysis was based on staining with either Hoechst 33342 or mithramycin A, two fluorochromes specific for the bases A-T and G-C, respectively. Two models were used for the estimation of the proportion of guanine plus cytosine in the nuclear genome. The first one was based on the linear relationships mithramycin A fluorescence/G-C content and ethidium bromide fluorescence/total DNA content. The second model, based on the curvilinear relationships Hoechst 33342 fluorescence/A-T content and mithramycin A fluorescence/G-C content, resulted in comparatively more homogenous and consistent data and appears more accurate. Comparison with previous reports from other methods for the physical investigation of nuclear genomes shows that flow cytometry of nuclei isolated from protoplasts is an accurate, convenient and robust technique to assay for genome sizes and base pair composition in marine macroalgae.Abbreviations A-T nucleic bases adenine and thymine - CRBC chicken red blood cell - FALS forward-angle light scatter - G-C nucleic bases guanine and cytosine - SEIM sorbitol enzymatic incubation medium - SWIM sea water incubation medium - Tm thermal denaturation temperature of DNA  相似文献   

19.
The objective of these experiments was to determine the efficacy of the new membrane permeant nucleic acid stain, SYBR-14, for assessing boar sperm viability and to determine it's effect on fertilization and early embryonic development using the pig as a model. We examined the staining patterns of SYBR-14 and another vital stain, Hoechst 33342, both in combination with the dead cell stain, propidium iodide (PI), to quantify the proportion of living and dead spermatozoa in ejaculated and epididymal semen. Flow cytometry analyses of semen from 4 boars revealed significant differences among boars for the proportion of SYBR-14-stained spermatozoa in both epididymal and ejaculated samples, but not for Hoechst 33342 or PI stained spermatozoa. Gilts were inseminated with unstained spermatozoa or spermatozoa stained with 2 levels of SYBR-14 or 2 levels of the reference stain, Hoechst 33342. Embryos recovered at 42 to 48 h postinsemination were morphologically evaluated, and only 4 to 8-cell embryos were continued in culture. Overall, fluorescent staining of boar spermatozoa with SYBR-14 or Hoechst 33342 neither affected their ability to fertilize oocytes, nor the developmental competence of the resultant embryos.  相似文献   

20.
Stem cells possess enormous therapeutic potential in tissue replacement. To study stem cells further, they must be isolated. Techniques are available for enrichment and study of hematopoietic stems cells, but thus far, techniques for purification of spermatogonial stem cells have not been described. Enrichment techniques for hematopoietic stem cells include the use of fluorescence-activated cell sorter analysis with Hoechst 33342 and rhodamine 123 (Rho) dyes. Use of Hoechst dye to isolate spermatogonial stem cells has been unsuccessful in our laboratory, and our results have conflicted with those from other laboratories. Taking advantage of the differential staining of the Rho dye, we report a novel method to enrich murine spermatogonial stem cells. Testicular cells are harvested from cryptorchid ROSA26 male mice. Populations of these cells are then stained with the Hoechst and Rho dyes, allowing them to be sorted by flow cytometry into a side population (SP) of Hoechst low-intensity cells and populations of low (Rho(low)) or high (Rho(hi)) fluorescent intensity. Sterile recipients, W/W(v) mice, with an intrinsic germ cell deficiency were transplanted with the Hoechst SP cells, Rho(low), Rho(hi), and nonsorted donor cells. No spermatogonial stem cell colonies were derived from the Hoechst SP cells. The number of spermatogonial stem cell colonies from transplanted Rho(low) cells showed a 17- and 20-fold enrichment over those of Rho(hi) and nonsorted cells, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号