首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 3,5-dichlorophenol, 2,4-dinitrophenol, and potassium dichromate on natural bacterial assemblages were examined by means of [3H]thymidine incorporation into trichloroacetic acid-insoluble material. Results from a large number of coastal marine and freshwater samples suggest the following. (i) The effects of the three toxicants included reductions in the bacterial cell number as well as changes in rates of [3H]thymidine incorporation and in [3H]thymidine incorporation per cell. The concentrations that inhibited [3H]thymidine incorporation by 50% ranged from 3 to 11 mg liter−1 for 3,5-dichlorophenol, 6 to 10 mg liter−1 for 2,4-dinitrophenol, and 21 to 123 mg liter−1 for potassium dichromate, with a tendency to higher values in bacterial assemblages from more eutrophic environments. (ii) The effects of 3,5-dichlorophenol and potassium dichromate determined by [3H]leucine incorporation into bacterial protein were similar or larger than those obtained from [3H]thymidine incorporation. (iii) Two to four hours of exposure to the toxicants was necessary before stable maximum effects were found in [3H]thymidine incorporation. (iv) Storage of natural environmental samples should be avoided, since tests with water stored for 1 to 3 days sometimes produced results different from results obtained from in situ tests. (v) The effects of 3,5-dichlorophenol, 2,4-dinitrophenol, and potassium dichromate on natural bacterial assemblages were relatively constant during periods with different growth rates in the assemblages, during various periods of the year, and between samples from freshwater and marine localities. With some precautions, [3H]thymidine incorporation can be used as a quick and sensitive method for determining the effects of toxicants on aquatic bacterial assemblages from natural environmental samples.  相似文献   

2.
The effect of 5-fluoro-2'-deoxyuridine (FdUrd) on [methyl-H] thymidine incorporation by bacterioplankton populations in subtropical freshwater, estuarine, and oceanic environments was examined. In estuarine waters, intracellular isotope dilution was inhibited by FdUrd, which enabled us to estimate both intracellular and extracellular isotope dilution. In 2 of 10 cases, extracellular isotope dilution was significant. At low concentrations of [methyl-H]thymidine or [6-H]thymidine, FdUrd completely inhibited incorporation of radioactivity into protein and RNA. At high concentrations of [H]thymidine, however, FdUrd had little effect on labeling patterns. The dihydrofolate reductase inhibitors amethopterin and trimethoprim had no effect on macromolecular labeling patterns. These results suggest that thymidylate synthase is not involved in nonspecific labeling and that FdUrd inhibits nonspecific labeling by blocking some other enzyme involved in thymidine catabolism. In oligotrophic oceanic and freshwater samples, FdUrd did not inhibit intracellular isotope dilution or [H]thymidine labeling of protein and RNA, but caused some inhibition of [H]thymidine incorporation into DNA. The ability of FdUrd to inhibit nonspecific macromolecular labeling during [H]thymidine incorporation was significantly correlated (r = 0.84) with total thymidine incorporation (in picomoles per liter per hour). The results are discussed in terms of applications of FdUrd to routine bacterial production measurements and the general assumptions of [H]thymidine incorporation.  相似文献   

3.
The effect of 5-fluoro-2′-deoxyuridine (FdUrd) on [methyl-3H] thymidine incorporation by bacterioplankton populations in subtropical freshwater, estuarine, and oceanic environments was examined. In estuarine waters, intracellular isotope dilution was inhibited by FdUrd, which enabled us to estimate both intracellular and extracellular isotope dilution. In 2 of 10 cases, extracellular isotope dilution was significant. At low concentrations of [methyl-3H]thymidine or [6-3H]thymidine, FdUrd completely inhibited incorporation of radioactivity into protein and RNA. At high concentrations of [3H]thymidine, however, FdUrd had little effect on labeling patterns. The dihydrofolate reductase inhibitors amethopterin and trimethoprim had no effect on macromolecular labeling patterns. These results suggest that thymidylate synthase is not involved in nonspecific labeling and that FdUrd inhibits nonspecific labeling by blocking some other enzyme involved in thymidine catabolism. In oligotrophic oceanic and freshwater samples, FdUrd did not inhibit intracellular isotope dilution or [3H]thymidine labeling of protein and RNA, but caused some inhibition of [3H]thymidine incorporation into DNA. The ability of FdUrd to inhibit nonspecific macromolecular labeling during [3H]thymidine incorporation was significantly correlated (r = 0.84) with total thymidine incorporation (in picomoles per liter per hour). The results are discussed in terms of applications of FdUrd to routine bacterial production measurements and the general assumptions of [3H]thymidine incorporation.  相似文献   

4.
A series of 72-hour growth inhibition tests with green alga Desmodesmus (Scenedesmus) subspicatus (ISO 8692) has been performed to test the delayed fluorescence (DF) parameters as possible endpoint measurements. Sensitivity to five toxicants with direct and indirect effects on photosynthesis was tested, and the median effective concentration (EC50) values derived from the cell concentration, absorbance and DF were compared. The sensitivity of DF intensity (DFI) was comparable with the two endpoints suggested in ISO 8692 for all five toxicants: potassium dichromate, 3,5-dichlorophenol (3,5-DCP), DCMU, copper and cadmium. In the case of potassium dichromate and copper, DFI was more sensitive than the other endpoints in this study. The analysis of DF relaxation kinetics showed a specific response to the herbicide DCMU. Additionally, a 24-hour test was performed with the same toxicant concentrations (except copper), where DFI was measured 30 minutes, one hour and 24 hours after the exposure. The influence of toxicants on DFI after a 24-hour exposure was comparable with the effects after 72 hours. Only 3,5-DCP influenced DFI after 30 minutes. DF proved to be a simple, reliable and rapid measurement to assess toxicity in algal tests, which can to some extent differentiate among various toxicants.  相似文献   

5.
Rates of nucleic acid synthesis have been used to examine microbiol growth in natural waters. These rates are calculated from the incorporation of [3H]adenine and [3H]thymidine for RNA and DNA syntheses, respectively. Several additional biochemical parameters must be measured or taken from the literature to estimate growth rates from the incorporation of the tritiated compounds. We propose a simple method of estimating a conversion factor which obviates measuring these biochemical parameters. The change in bacterial abundance and incorporation rates of [3H]thymidine was measured in samples from three environments. The incorporation of exogenous [3H]thymidine was closely coupled with growth and cell division as estimated from the increase in bacterial biomass. Analysis of the changes in incorporation rates and initial bacterial abundance yielded a conversion factor for calculating bacterial production rates from incorporation rates. Furthermore, the growth rate of only those bacteria incorporating the compound can be estimated. The data analysis and experimental design can be used to estimate the proportion of nondividing cells and to examine changes in cell volumes.  相似文献   

6.
The conversion factor for the calculation of bacterial production from rates of [H]thymidine incorporation was examined with diluted batch cultures of freshwater bacteria. Natural bacterial assemblages were grown in aged, normal, and enriched media at 10 to 20 degrees C. The generation time during 101 growth cycles covered a range from 4 to >200 h. The average conversion factor was 2.15 x 10 cells mol of thymidine incorporated into the trichloroacetic acid (TCA) precipitate (standard error = 0.29 x 10; n = 54), when the generation time exceeded 20 h. At generation times of <20 h, the average conversion factor was 11.8 x 10 cells mol of thymidine incorporated into TCA precipitate (standard error = 1.72 x 10; n = 47). The amount of radioactivity in purified DNA increased with decreasing generation time and increasing conversion factor (calculated from the TCA precipitate), corresponding to a decrease in the percentage in protein. The conversion factors calculated from purified DNA or from the TCA precipitate gave the same variability. Conversion factors did not change significantly with the medium, but were significantly higher at 20 degrees C than at 15 and 10 degrees C. A detailed examination of the [H]thymidine concentrations that were needed to achieve maximum labeling in DNA was carried out 6 times during a complete growth cycle. During periods with low generation times and high conversion factors, 15 nM [H]thymidine was enough for the maximum labeling of the TCA precipitate. This suggests that incorporation of [H]thymidine into DNA is probably limited by uptake during periods with generation times of <20 h and that freshwater bacterioplankton cell production sometimes is underestimated when a conversion factor of 2.15 x 10 cells mol of thymidine incorporated is used.  相似文献   

7.
The relationship between bacterial growth and incorporation of [methyl-H]thymidine in oligotrophic lake water cultures was investigated. Prescreening, dilution, and addition of organic and inorganic nutrients were treatments used to prevent bacterivory and stimulate bacterial growth. Growth in unmanipulated samples was estimated through separate measurements of grazing losses. Both bacterial number and biovolume growth responses were measured, and incorporation of [H]thymidine in both total macromolecules and nucleic acids was assayed. The treatments had significant effects on conversion factors used to relate thymidine incorporation to bacterial growth. Cell number-based factors ranged from 1.1 x 10 to 38 x 10 cells mol of total thymidine incorporation and varied with treatment up to 10-fold for the same initial bacterial assemblage. In contrast, cell biovolume-based conversion factors were similar for two treatment groups across a 16-fold range of [H]thymidine incorporation rates: 5.54 x 10 mum mol of total thymidine incorporation and 15.2 x 10 mum mol of nucleic acid incorporation. Much of the variation in cell number-based conversion factors was related to changes in apparent mean cell volume of produced bacteria. Phosphorus addition stimulated [H]thymidine incorporation more than it increased bacterial growth, which resulted in low conversion factors.  相似文献   

8.
Measurements of bacterial secondary production were carried out during 13 diel studies at one coastal marine station and in five lakes differing with respect to nutrient concentration and primary production. Bacterial secondary production was measured in situ every 3 to 5 h by [3H]thymidine incorporation into DNA. In some of the diel studies, these results were compared with results obtained from dark 14CO2 uptake and frequency of dividing cells. Only minor diel changes were observed. The rate of [3H]thymidine incorporation into DNA and the frequency of dividing cells varied from 23 to 194% of the diel mean. The dark CO2 uptake rate varied from 12 to 259% of the diel mean. An analysis of variance demonstrated that no specific time periods during 24 h showed significantly different production rates, supporting the idea that bacterial activities in natural assemblages are controlled by a variety of events. The best correction (r2 = 0.74) was obtained between the [3H]thymidine incorporation and frequency of dividing cells procedures from the lake water samples. The actual production rates calculated by [3H]thymidine incorporation into DNA were appreciably lower than those obtained by the frequency of dividing cells and the dark CO2 uptake techniques. Diel rates of bacterial production are discussed in relation to sampling frequency, statistical errors, and choice of method.  相似文献   

9.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

10.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

11.
Bacterioplankton abundance, [H]thymidine incorporation, CO(2) uptake in the dark, and fractionated primary production were measured on several occasions between June and August 1982 in eutrophic Lake Norrviken, Sweden. Bacterioplankton abundance and carbon biomass ranged from 0.5 x 10 to 2.4 x 10 cells liter and 7 to 47 mug of C liter, respectively. The average bacterial cell volume was 0.185 mum. [H]thymidine incorporation into cold-trichloroacetic acid-insoluble material ranged from 12 x 10 to 200 x 10 mol liter h. Bacterial carbon production rates were estimated to be 0.2 to 7.1 mug of C liter h. Bacterial production estimates from [H]thymidine incorporation and CO(2) uptake in the dark agreed when activity was high but diverged when activity was low and when blue-green algae (cyanobacteria) dominated the phytoplankton. Size fractionation indicated negligible uptake of [H]thymidine in the >3-mum fraction during a chrysophycean bloom in early June. We found that >50% of the H activity was in the >3-mum fraction in late August; this phenomenon was most likely due to Microcystis spp., their associated bacteria, or both. Over 60% of the CO(2) uptake in the dark was attributed to algae on each sampling occasion. Algal exudate was an important carbon source for planktonic bacteria. Bacterial production was roughly 50% of primary production.  相似文献   

12.
The use of radiolabeled nucleosides and nucleic acid bases to estimate the rates of RNA and DNA synthesis in naturally occurring microbial assemblages requires numerous assumptions, several of which are evaluated herein. Comparative time series analyses of the uptake and incorporation, labeling specificity, and extent of catabolism of [2-3H]adenine, [methyl-3H]thymidine, and [5-3H]uridine were performed with pure bacterial and algal cultures, as well as with environmental samples. [3H]thymidine yielded the most variable results, especially with regard to the extent of nonspecific macromolecular labeling. The pathways of [3H]thymidine and [3H]adenine metabolism were further evaluated by isotope dilution methods and by comparing incorporation patterns of thymidine labeled at different sites of the molecule. The advantages, uncertainties, and limitations of the use of radiolabeled nucleic acid precursors in studies of aquatic microbial ecology are discussed and a prospectus for future studies presented.  相似文献   

13.
A direct comparison of [H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [H]thymidine incorporation and isotope dilution assays.  相似文献   

14.
In aquatic ecosystems, [3H]thymidine incorporation into bacterial DNA and [3H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2–77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91–1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.  相似文献   

15.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

16.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

17.
Summary Cultured cells from the bovine endosalpinx were used to evaluate effects of estradiol-17β, progesterone, epidermal growth factor, and insulinlike growth factors I and II on [3H]thymidine incorporation. Cells were treated with hormones and growth factors when approximately 50% confluent. After 24 h, DNA synthesis was quantified by pulsing cells with [3H]thymidine for 12 h and determining uptake into DNA. Cells prepared by mechanical dispersal incorporated more [3H]thymidine than cells dispersed with collagenase. However, hormonal responses were the same for both types of cells. As compared to plastic, cells on a Matrigel substratum exhibited lower incorporation of [3H]thymidine and were unresponsive to hormones. Estradiol-17β increased [3H]thymidine incorporation slightly at 10−10 mol/liter and higher. Epidermal growth factor, insulinlike growth factor-I, and insulinlike growth factor-II also stimulated [3H]thymidine incorporation. Effects of insulinlike growth factor-I were greater for cells treated with estradiol-17β. In the absence of estradiol, progesterone inhibited [3H]thymidine incorporation at 1, 10, and 100 ng/ml. When estradiol-17β was present, progesterone stimulated [3H]thymidine incorporation at 1 ng/ml and reduced incorporation at 100 ng/ml. In conclusion, [3H]thymidine incorporation by cultured oviductal endosalpingeal cells can be regulated by ovarian steroids and growth factors. These molecules may represent signals through which the ovary, embryo, and oviduct regulate oviductal growth. Work conducted while on a sabbatical leave supported by the Deutsche Forschungsgemeinschaft.  相似文献   

18.
A direct comparison of [3H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [3H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [3H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [3H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [3H]thymidine incorporation and isotope dilution assays.  相似文献   

19.
The relationship between bacterial growth and incorporation of [methyl-3H]thymidine in oligotrophic lake water cultures was investigated. Prescreening, dilution, and addition of organic and inorganic nutrients were treatments used to prevent bacterivory and stimulate bacterial growth. Growth in unmanipulated samples was estimated through separate measurements of grazing losses. Both bacterial number and biovolume growth responses were measured, and incorporation of [3H]thymidine in both total macromolecules and nucleic acids was assayed. The treatments had significant effects on conversion factors used to relate thymidine incorporation to bacterial growth. Cell number-based factors ranged from 1.1 × 1018 to 38 × 1018 cells mol of total thymidine incorporation−1 and varied with treatment up to 10-fold for the same initial bacterial assemblage. In contrast, cell biovolume-based conversion factors were similar for two treatment groups across a 16-fold range of [3H]thymidine incorporation rates: 5.54 × 1017 μm3 mol of total thymidine incorporation−1 and 15.2 × 1017 μm3 mol of nucleic acid incorporation−1. Much of the variation in cell number-based conversion factors was related to changes in apparent mean cell volume of produced bacteria. Phosphorus addition stimulated [3H]thymidine incorporation more than it increased bacterial growth, which resulted in low conversion factors.  相似文献   

20.
The incorporation of [H]thymidine by axenic cultures of anaerobic bacteria was investigated as a means to measure growth. The three fermentative strains and one of the methanogenic strains tested incorporated [H]thymidine, whereas the sulfate-reducing bacterium and two of the methanogenic bacteria were unable to incorporate [H]thymidine during growth. It is concluded that the [H]thymidine incorporation method underestimates bacterial growth in anaerobic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号