首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pyrrolidine dithiocarbamate (PDTC) is a metal-chelating compound that acts as antioxidant or pro-oxidant and is widely used to study redox regulation of cell function. In the present study, we investigated effects of PDTC and another antioxidant, N-acetyl-l-cysteine (NAC), on TNF-alpha-dependent activation of NF-kappaB in human aortic smooth muscle cells (HASMC). Treatment of the cells with TNF-alpha induced the activation of p65/p50 heterodimer NF-kappaB and increased the mRNA levels of monocyte chemoattractant protein (MCP)-1. Pretreatment with PDTC markedly suppressed the NF-kappaB activation and expression of MCP-1 by inhibiting IkappaB-alpha degradation. In contrast, NAC had no effect. PDTC concomitantly increased the intracellular levels of copper, and bathocuproinedisulfonic acid, a non-cell-permeable chelator of Cu(1+), inhibited the PDTC-induced increase in intracellular copper level and reversed the PDTC effects on IkappaB-alpha, NF-kappaB, and MCP-1. These results indicate that TNF-alpha-dependent expression of MCP-1 in HASMC is tightly regulated by NF-kappaB and that intracellular copper level is crucial for the TNF-alpha-dependent activation of NF-kappaB in HASMC.  相似文献   

2.
3.
Pyrrolidine dithiocarbamate (PDTC) is a metal chelating compound that can exert either pro-oxidant or antioxidant effects in different situations. Several studies demonstrate that it can inhibit cyclooxygenase-2 (COX-2) expression, which may be due to its antioxidant activity. Here, we found that PDTC rather increased COX-2 expression in NIH 3T3. The increase of COX-2 expression was inhibited by adding bathocuproline disulfonic acid, a non-permeable specific copper chelator, in the incubation medium. This result suggests that PDTC exerts its effect by transporting redox-active copper ions into the cells. In support of this observation, PDTC did not induce COX-2 expression in a serum-free environment. When PDTC was added with copper in the serum-free medium, it acted as the inducer of COX-2 expression. In addition, pretreatment of N-acetyl-L-cystein or dithiothreitol, other antioxidants, inhibited the PDTC-induced COX-2 expression. Our data indicate that PDTC induces COX-2 expression in NIH 3T3 cells, which may be due to its activities as a copper chelator and a pro-oxidant.  相似文献   

4.
5.
6.
Pyrrolidinedithiocarbamate (PDTC) is a metal-chelating compound that exerts both pro-oxidant and antioxidant effects and is widely used as an antitumor and anti-inflammatory agent. Heme oxygenase-1 (HO-1) is a redox-sensitive-inducible protein that provides efficient cytoprotection against oxidative stress. Because it has been reported that several angiogenic stimulating factors upregulating HO-1 in endothelial cells cause a significant increase in angiogenesis, we investigated the effect of PDTC on cell proliferation and angiogenesis and the effect of overexpression and underexpression of HO-1. The evaluation of PDTC (20 or 50 micro M) in endothelial cells resulted in significant increase in HO-1 mRNA and protein (P < 0.001), but a decrease in cell proliferation. Pretreatment of endothelial cells with SnCl(2) (10 micro M), an inducer of HO-1 attenuated the PDTC-mediated decrease in cell proliferation (P < 0.05). In contrast, pretreatment with SnMP, an inhibitor of HO activity, magnified the inhibiting effect of PDTC on cell proliferation. Upregulation of HO-1 gene expression by retrovirus-mediated delivery of the human HO-1 gene also attenuated the PDTC-induced decrease in cell proliferation. Underexpression of HO-1, by delivery of the human HO-1 in antisense orientation, enhanced the PDTC-mediated decrease in cell proliferation. The decrease, by PDTC, in proliferation of cells underexpressing HO-1 is related to an increase in O(-)(2) production. Collectively, these results demonstrate that upregulation of HO-1 was able to attenuate the PDTC-mediated cell proliferation, but was unable to reverse the high concentration of PDTC-induced decrease in angiogenesis.  相似文献   

7.
Pyrrolidinedithiocarbamate (PDTC) andN-Acetylcysteine (NAC) are metal and nonmetal-chelating antioxidant which can induce rat and human smooth muscle cell death. When the smooth muscle cells from mouse aorta (MASMC) that we successfully cultured recently was exposed to PDTC and NAC in a normal serum state, the cells were induced to death by these compounds. However, PDTC did not induce the cell death in a serum depleted medium. This data suggests that certain factors in the serum may mediate the cytotoxic effect of PDTC. The metal chelator, Ca-EDTA blocked PDTC-induced cell death, but Cu-, Fe-, and Zn-EDTA did not block the PDTC-induced cell death. This data indicated that copper, iron, and zinc in the serum may lead to the cytotoxic effect of PDTC Investigation of the intracellular zinc level in PDTC-induced smooth muscle cell death using the zinc probe dyeN-(6-methoxy-8-quinolyl)-p-toluenesulfonamide shows that only the musclecontaining layers of the arteries have higher level of zinc. As expected, PDTC increased the intracellular fluorescence level of the zinc. In agreement with these results, the addition of an exogenous metal, zinc, induced the vascular aortic smooth muscle cell death which led to an increased intracellular zinc level. We concluded that PDTC induced mouse aortic smooth muscle cell death required not only zinc level but also intracellular copper and iron level. The mechanism of this antioxidant to induce vascular smooth muscle cell death may provide a new strategy to prevent their proliferation in arteriosclerotic lesions.  相似文献   

8.
The antioxidant and metal-chelating effects of pyrrolidine dithiocarbamate (PDTC) have been extensively studied. PDTC prevents cell death induced by various insults. However, PDTC itself may cause cell death in selected experimental paradigms. PDTC induced bovine cerebral endothelial cell death. However, in serum-depleted medium, PDTC did not affect the cell viability, suggesting that certain factors in serum may mediate the cytotoxic effect of PDTC. The metal chelators bathocuproine disulfonic acid, o-phenanthroline, bathophenanthroline disulfonic acid, and N,N,N',N'-tetrakis(2-pyridyl-methyl)ethylenediamine (TPEN) prevented the cell death induced by PDTC. In a serum-deprived condition, addition of exogenous metals, copper or zinc, restored the cytotoxic effect of PDTC. These data indicate that metals such as copper or zinc in serum may mediate the cytotoxic effect of PDTC. The potency of zinc for PDTC-induced endothelial cell death was greater than that of copper. Zn-EDTA did not block PDTC-induced cell death, whereas Ca-EDTA and Cu-EDTA were able to prevent this PDTC effect. PDTC increased the intracellular fluorescence of the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide, which was quenched by TPEN or various EDTA preparations but not by Zn-EDTA. Results suggest that an increase in intracellular zinc concentration is required in PDTC-induced cerebral endothelial cell death.  相似文献   

9.
Pyrrolidine dithiocarbamate (PDTC) is known to inhibit NF-kappa B, which plays a critical role(s) as an immediate early mediator of immune and inflammatory responses. Here we show that PDTC induces heat shock factor 1 (HSF1) activation and heat shock protein expression, while other antioxidants such as butylated hydroxytoluene (BHT), n-propylgallate (PG), ascorbic acid (AA), and N-acetyl-L-cysteine (NAC) do not. Since PDTC exerts other functions than antioxidant, e.g., a pro-oxidant, metal chelator, and thiol group modulator, we examined which of these activities is responsible for the PDTC-induced HSF1 activation. PDTC-induced HSF1 activation was not prevented by metal chelators, EDTAs, indicating that the metal chelating effect of PDTC is not linked to the HSF1 activation. PDTC increased intracellular GSSG level. In addition, PDTC-induced activation of HSF1 was significantly inhibited by NAC and a thiol-reducing agent dithiothreitol (DTT), while it was partially prevented by other antioxidants, AA, BHT, and PG. These results suggest that the activation of HSF1 by PDTC may be due to its activities as pro-oxidant and thiol group modulator rather than anti-oxidant.  相似文献   

10.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds, and may increase the risk of human exposure to this chemical at the workplace. In a previous study, we demonstrated the pro-oxidant action and the mutagenic properties of this compound on bacteria and yeast. In the present study, we evaluated the putative cytotoxic, pro-oxidant, genotoxic, and mutagenic properties of this molecule in V79 Chinese lung fibroblast cells. When cells were treated with increasing concentrations of DPDS, its cytotoxic activity, as determined using four cell viability endpoints, occurs in doses up to 50 microM. The MTT reduction was stimulated, which may indicate reactive oxygen species (ROS) generation. Accordingly, the treatment of cells for 3h with cytotoxic doses of DPDS increased TBARS levels, and sensitized cells to oxidative challenge, indicating a pro-oxidant effect. The measurement of total, reduced, and oxidized glutathione showed that DPDS can lead to lower intracellular glutathione depletion, with no increase in the oxidation rate in a dose- and time-dependent manner. At the higher doses, DPDS generates DNA strand breaks, as observed using the comet assay. The treatment also induced an increase in the number of binucleated cells in the micronucleus test, showing mutagenic risk by this molecule at high concentrations. Finally, pre-incubation with N-acetylcysteine, which restored GSH to normal levels, annulled DPDS pro-oxidant and genotoxic effects. These findings show that DPDS-induced oxidative stress and toxicity are closely related to intracellular level of reduced glutathione. Moreover, at lower doses, this molecule has antioxidant properties, protecting the cell against oxidative damage induced by hydrogen peroxide.  相似文献   

11.
Pyrrolidinedithiocarbamate (PDTC) is a metal chelating compound, which exerts both pro-apoptotic effect and pro-oxidant activity on many cells. Our objective was to investigate whether PDTC was able to interfere with apoptotic process in leukemic and normal bone marrow CD34+ cells. Since hematopoietic growth factors stimulate growth and differentiation and prevent apoptosis, we therefore studied the effect of growth factors pretreatment, such as interleukin-3 and granulocyte-macrophage colony stimulating factor, in human myeloid CD34+ cells to evaluate whether they protect the cells from the apoptotic action of PDTC.We revealed that PDTC exerted an apoptotic effect in leukemic CD34+ cells. This effect was dependent on the ability of this compound to generate the oxidation of cellular glutathion to its disulphide and consequently to induce an intracellular oxidative stress. Hematopoietic growth factors did not protect cells from apoptosis induced by previous treatment with PDTC. The ability of PDTC to induce apoptosis was restricted to acute myelogenous leukaemia CD34+ cells, since normal CD34+ cells were insensitive to the pro-oxidant effect of PDTC.These findings imply that normal cells are equipped with mechanisms by which they respond differently to PDTC effects with respect to leukemic cells.  相似文献   

12.
Resveratrol (RSV) is known for its antioxidant properties; however, this compound has been proposed to have cytotoxic and pro-oxidant effects depending on its concentration and time of exposure. We previously reported the cell cycle arrest effect of low doses of RSV in GRX cells, an activated hepatic stellate cell model. Here, we evaluated the effects of RSV treatment (0.1–50 μM) for 24 and 120 h on GRX viability and oxidative status. Only treatment with 50 μM of RSV reduced the amount of live cells. However, even low doses of RSV induced an increased reactive species production at both treatment times. While being diminished within 24 h, RSV induced an increase in the SOD activity in 120 h. The cellular damage was substantially increased at 24 h in the 50 μM RSV-treated group, as indicated by the high lipoperoxidation, which may be related to the significant cell death and low proliferation. Paradoxically, this cellular damage and lipoperoxidation were considerably reduced in this group after 120 h of treatment while the surviving cells proliferated. In conclusion, RSV induced a dose-dependent pro-oxidant effect in GRX cells. The highest RSV dose induced oxidative-related damage, drastically reducing cell viability; but this cytotoxicity seems to be attenuated during 120 h of treatment.  相似文献   

13.
Animal tumor bioassays and in vitro cell culture systems have demonstrated that epigallocatechin-3-O-gallate (EGCG), the predominant catechin in green tea, possesses anti-proliferative and pro-apoptotic effects on various cancer cells and tumors. In this study, we investigated the effects of EGCG on cell growth, cell cycle progression, and apoptosis in human fibrosarcoma HT-1080 cells. The involvement of p53, Bcl-2, Bax, caspases, and nuclear factor-κB (NF-κB) was examined as a mechanism for the anti-cancer activity of EGCG. Time-dependent intracellular trafficking of EGCG was also determined using fluorescein isothiocyanate (FITC)-conjugated EGCG (FITC-EGCG). Our data show that EGCG treatment caused dose-dependent cell growth inhibition, cell cycle arrest at the G0/G1 phase, and DNA fragmentation suggesting the induction of apoptosis in HT-1080 cells. Immunoblot analysis revealed that the expression of p53, caspase-7 and -9 as well as the ratio of Bax/Bcl-2 protein increased significantly with higher EGCG concentrations and longer incubation times. Moreover, expression of phosphorylated NF-κB/p65 in HT-1080 cells was inhibited by EGCG treatment in a dose-dependent manner, while that of unphosphorylated NF-κB/p65 remained unaffected. Here we also reveal time-dependent internalization of FITC-EGCG into the cytosol of HT-1080 cells and its subsequent nuclear translocation. These results suggest that EGCG may interrupt exogenous signals directed towards genes involved in proliferation and cell cycle progression. Taken together, our data indicate that HT-1080 apoptosis may be mediated through the induction of p53 and caspases by the pro-oxidant activity of internalized EGCG, as well as suppression of Bcl-2 and phosphorylated NF-κB by the antioxidant activity of EGCG.  相似文献   

14.
Ascorbic acid (AA) is a common culture medium and dietary supplement. While AA is most commonly known for its antioxidant properties, it is also known to function as a pro-oxidant under select conditions. However, the complexity and often unknown composition of biological culture systems makes prediction of AA behaviour in supplemented cultures challenging. The frequent observation of outcomes inconsistent with antioxidant behaviour suggests that AA may be playing a pro-oxidant role more often than appreciated. In this work we explored the intracellular and extracellular impact of AA supplementation on KG1a myeloid leukaemia cells over a 24-h culture period following the addition of the AA supplement. At 24 h we found that supplementation of AA up to 250 μM resulted in intracellular antioxidant behaviour. However, when these same cultures were evaluated at 2 or 4 h we observed pro-oxidant activity at the higher AA concentrations indicating that the outcome was very much time and dose dependent. In contrast, pro-oxidant activity was never observed in the extracellular medium. Paradoxically, and to our knowledge not previously reported, we observed that intracellular pro-oxidant activity and extracellular antioxidant activity could occur simultaneously. These results indicate that the precise activity of AA supplementation varies as a function of dose, time and cellular location. Further, these results demonstrate how in the absence of careful culture characterization the true impact of AA on cultures could be underappreciated.  相似文献   

15.
Apigenin has been reported to inhibit proliferation of cancer cells; however, the mechanism underlying its action is not completely understood. Here, we evaluated the effects of apigenin on the levels of expression and activity of antioxidant enzymes, and the involvement of ROS in the mechanism of cell death induced by apigenin in HepG2 human hepatoma cells. Upon treatment with apigenin, HepG2 cells displayed a reduction in cell viability in a dose- and time-dependent manner, and some morphological changes. In addition, apigenin treatment induced ROS generation and significantly decreased the mRNA levels and activity of catalase and levels of intracellular GSH. On the other hand, apigenin treatment did not alter the expression or activity levels of other antioxidant enzymes. Addition of exogenous catalase significantly reduced the effects of apigenin on HepG2 cell death. We also demonstrated that HepG2 cells are more sensitive to apigenin-mediated cell death than are primary cultures of mouse hepatocytes, suggesting a differential toxic effect of this agent in tumor cells. Our results suggest that apigenin-induced apoptosis in HepG2 cells may be mediated by a H2O2-dependent pathway via reduction of the antioxidant defenses.  相似文献   

16.
Pyrrolidine dithiocarbamate (PDTC), a metal chelating compound, is known to induce cell death in vascular smooth muscle cells (VSMC). However, the molecular mechanism for PDTC-induced VSMC death is not well understood. Addition of PDTC reduced cell growth and DNA synthesis on VSMC in low density conditions. However, in serum depleted medium, PDTC did not affect the cell viability, suggesting that certain factors in serum may mediate the cytotoxic effect of PDTC. Several metal chelators prevented the cell death induced by PDTC. In a serum-deprived condition, addition of exogenous metals, copper, iron, and zinc, restored the cytotoxic effect of PDTC. These data indicate that metals such as copper, iron, and zinc in serum may mediate the cytotoxic effect of PDTC. At low VSMC density in 10% FBS, treatment of PDTC, which induced a cell-cycle block in G1-phase, induced down-regulation of cyclins and CDKs and up-regulation of the CDK inhibitor p21 expression, whereas up-regulation of p27 or p53 by PDTC was not observed. Finally, we determined PDTC-mediated signaling pathway involved in VSMC death. Among relevant pathways, PDTC induced marked activation of p38MAPK and JNK. Expression of dominant negative p38MAPK and SB203580, a p38MAPK specific inhibitor, blocked PDTC-dependent p38MAPK, growth inhibition, and p21 expression. These data demonstrate that the p38MAPK pathway participates in p21 induction, which consequently leads to decrease of cyclin D1/cdk4 and cyclin E/cdk2 complexes and PDTC-dependent VSMC growth inhibition. In conclusion, an understanding of the molecular mechanisms of PDTC in VSMC provides a theoretical basis for clinical approaches using antioxidant therapies in atherosclerosis.  相似文献   

17.
The antioxidant N-acetyl cysteine (NAC) is a precursor of intracellular glutathione (GSH) and is also a well known as one of the chemopreventive agents which act through a variety of cellular mechanisms. We examined the effects of NAC on cell cycle progression in the pancreatic carcinoma cell lines, SW1990 and JHP1. Cells were incubated with or without NAC. Cell cycle distribution was analyzed by flow cytometry and immunoblotting. NAC suppressed cell proliferation in a concentration-dependent manner, whereas NAC increased intracellular glutathione content significantly in a dose-dependent manner. The percentage of cells in the G1 phase after treatment with NAC was significantly higher than the percentage seen for control cells. Cyclin D1 expression of carcinoma cells treated with NAC decreased remarkably compared with cells without NAC treatment. Thus, the antiproliferative effect of NAC by prolongation of the G1 phase in human pancreatic carcinoma cells shows its possible utility as an antitumor agent.  相似文献   

18.
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is inducible by inflammatory conditions, which cause oxidative stress in endothelial cells. Overexpression of human HO-1 in endothelial cells may have the potential to provide protection against a variety of agents that cause oxidative stress. We investigated the physiological significance of human HO-1 overexpression, using a retroviral vector, on cell cycle progression in the presence and absence of pyrrolidine dithiocarbamate (PDTC). The addition of PDTC (25 and 50 microM) to human microvessel endothelial cells over 24 h resulted in significant (P < 0.05) abnormalities in DNA distribution and cell cycle progression compared to cells overexpressing the HO-1 gene. The addition of PDTC resulted in a significantly decreased G(1) phase and an increased G(2)/M phase in the control cells, but not in cells transduced with the human HO-1 gene (P < 0.05). Further, PDTC had a potent effect on DNA distribution abnormalities in exponentially grown cells compared to subconfluent cells. Upregulation of HO activity in endothelial cells, as a result of overexpressing human HO-1, prevented PDTC-mediated abnormalities in DNA distribution. Inhibition of HO activity by tin-mesoporphyrin (SnMP) (30 microM) resulted in enhancement of PDTC-mediated abnormalities in cell cycle progression. Bilirubin or iron did not mediate DNA distribution. We conclude that an increase in endothelial cell HO-1 activity with subsequent generation of carbon monoxide, elicited by gene transfer, reversed the PDTC-mediated abnormalities in cell cycle progression and is thus a potential therapeutic means for attenuating the effects of oxidative stress-causing agents.  相似文献   

19.
Melatonin is an endogenous indolamine, classically known as a light/dark regulator. Besides classical functions, melatonin has also showed to have a wide range of antitumoral effects in numerous cancer experimental models. However, no definite mechanism has been described to explain the whole range of antineoplasic effects. Here we describe a dual effect of melatonin on intracellular redox state in relation to its antiproliferative vs cytotoxic actions in cancer cells. Thus, inhibition of proliferation correlates with a decrease on intracellular reactive oxygen species (ROS) and increase of antioxidant defences (antioxidant enzymes and intracellular gluthation,GSH levels), while induction of cell death correlates with an increase on intracellular ROS and decrease of antioxidant defences. Moreover, cell death can be prevented by other well-known antioxidants or can be increased by hydrogen peroxide. Thus, tumour cell fate will depend on the ability of melatonin to induce either an antioxidant environment--related to the antiproliferative effect or a prooxidant environment related to the cytotoxic effect.  相似文献   

20.
The putative modulation of the base excision repair enzyme, human 8-oxoguanine glycosylase (hOGG1), important in the removal of the potentially mutagenic lesion 8-oxo-2'-deoxyguanosine (8-oxodG), was investigated in human cell culture models. The expression of specific mRNA and protein was measured following pro-oxidant and antioxidant treatments in one human lymphoblastoid and one keratinocyte line. The measurement of intracellular reactive oxygen species generation was monitored by a fluorogenic assay and potential genotoxic effects confirmed by the dose-dependent increase in formamidopyrimidine-DNA glycosylase (Fpg) sensitive sites by alkaline unwinding following sub-lethal doses of hydrogen peroxide. The generation of a potentially antioxidant environment was assessed by the intracellular increase and extracellular depletion in ascorbic acid, confirmed by capillary electrophoresis. Despite these pro-oxidant and antioxidant treatments no significant change in mRNA of hOGG1 was observed in either cell line. Western analysis revealed that relatively high, yet noncytotoxic, doses of hydrogen peroxide caused a consistent approximate 50% decrease in hOGG1 protein in lymphoblastoid cells. The lack of upregulation of hOGG1 suggests the gene is constitutively expressed, which is further supported by studies examining the sequence of its promoter region. However, hOGG1 protein turnover may be sensitive to intracellular redox changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号