首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rat brain S100-binding protein, R40,000, has been isolated, characterized, and identified as fructose-1,6-bisphosphate aldolase. R40,000 was purified by ammonium sulfate precipitation, hydroxylapatite chromatography, dye-binding chromatography, and electroelution from sodium dodecyl sulfate-polyacrylamide gels. Microsequence analysis of a fragment of R40,000 revealed a 15-residue amino acid sequence which shows a high degree of homology to the amino acid sequence of fructose-1,6-bisphosphate aldolase from rabbit muscle and rat liver. Further characterization demonstrated that R40,000 has an amino acid composition, subunit molecular weight, and cyanogen bromide map similar to aldolase. In addition, purified aldolase interacts with S100 alpha and S100 beta by gel overlay, and aldolase enzyme activity is stimulated 2-fold in vitro by S100 alpha and S100 beta. S100 interacts predominantly with the C or brain-specific form of the enzyme in gels and stimulates the activity of the C-enriched form of the enzyme in a calcium-dependent manner. Altogether, these data suggest that fructose-1,6-bisphosphate aldolase may be an intracellular target of S100 action in brain.  相似文献   

2.
3.
Fructose-1,6-bisphosphatase is one of the regulatory enzymes of gluconeogenesis in kidney cortex. The effect of ribose 1,5-bisphosphate on fructose-1,6-bisphosphatase purified from rat kidney cortex was studied. Rat kidney cortex, fructose-1,6-bisphosphatase exhibited hyperbolic kinetics with regard to its substrate, but the activity was inhibited by ribose 1,5-bisphosphate at nanomolar concentrations. The inhibitory effect of ribose 1,5-bisphosphate on the fructose-1,6-bisphosphatase was enhanced in the presence of AMP, one of the inhibitors of fructose-1,6-bisphosphatase. Fructose-2,6-bisphosphate, which is an inhibitor of fructose-1,6-bisphosphatase, inhibited rat kidney cortex fructose-1,6-bisphosphatase activities at a low concentration of fructose-1,6-bisphosphate but a high concentration of fructose-1,6-bisphosphate relieved fructose-1,6-bisphosphatase from fructose-2,6-bisphosphate-dependent inhibition. On the contrary, fructose-1,6-bisphosphate was not effective for the recovery of fructose-1,6-bisphosphatase from ribose 1,5-bisphosphate-dependent inhibition. These results suggest that ribose 1,5-bisphosphate is a potent inhibitor and is involved in the regulation of fructose-1,6-bisphosphatase in rat kidney cortex.  相似文献   

4.
Phosphorylated fructose-1,6-bisphosphatase (FBPase) was isolated from rabbit muscle in an SDS/PAGE homogeneous form. Its dephosphorylation with alkaline phosphatase revealed 2.8 moles of inorganic phosphate per mole of FBPase. The phosphorylated FBPase (P-FBPase) differs from the dephosphorylated enzyme in terms of its kinetic properties like K(m) and k(cat), which are two times higher for the phosphorylated FBPase, and in the affinity for aldolase, which is three times lower for the dephosphorylated enzyme. Dephosphorylated FBPase can be a substrate for protein kinase A and the amount of phosphate incorporated per FBPase monomer can reach 2-3 molecules. Since interaction of muscle aldolase with muscle FBPase results in desensitisation of the latter toward AMP inhibition (Rakus & Dzugaj, 2000, Biochem. Biophys. Res. Commun. 275, 611-616), phosphorylation may be considered as a way of muscle FBPase activity regulation.  相似文献   

5.
Inhibition studies with the photoreactive AMP analog, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), demonstrate that this compound is, like AMP, an allosteric inhibitor of pig kidney and muscle fructose-1,6-biphosphateses. Photolysis of a mixture of purified pig kidney fructose-1,6-biphosphate and 8-azido-[14C]AMP results in the loss of enzyme activity and the reagent is incorporated to the protein. The incorporation of reagent linearly correlates with the loss of enzyme activity. Extrapolation to zero activity correlates with the incorporation of 3.7 mol of reagent/mol of enzyme (i.e. 0.9 per subunit). Thus, 8-azido-AMP appears to be a photoaffinity label for the allosteric AMP binding site of fructose-1,6-biphosphatase.  相似文献   

6.
Preincubation of chloroplastic fructose-1,6-bisphosphatase (FBPase) in the presence of Ca2+/fructose-1,6-bisphosphate (FBS) gives rise to an active enzyme. This non-reductive activation at pH 8 occurs in the same range of time (min) as the well known reductive activation by thioredoxins and this process is reversible. A conformational change of the enzyme occurs upon the activation by Ca2+/FBP. Indeed, the circular dichroism and the fluorescence spectra of the inactive and active enzymes are different. The titration of the sulfhydryl groups of both enzymes indicates that one -SH group per monomer is unmasked upon activation, and the isoelectrofocusing pattern shows that the pI of inactive FBPase is shifted from 4.26 to 4.56 upon this non-reductive process.  相似文献   

7.
The effect of pH and of Mg2+ concentration on the light activated form of stromal fructose-1,6-bisphosphatase (FBPase) was studied using the enzyme rapidly extracted from illuminated spinach chloroplasts. The (fructose-1,6-bisphosphate4-)(Mg2+) complex has been identified as the substrate of the enzyme. Therefore, changes of pH and Mg2+ concentrations have an immediate effect on the activity of FBPase by shifting the pH and Mg2+ dependent equilibrium concentration of the substrate. In addition, changes of pH and Mg2+ concentration in the assay medium have a delayed effect on FBPase activity. A correlation of the activities observed using different pH and Mg2+ concentrations indicates, that the effect is not a consequence of the pH and Mg2+ concentration as such, but is caused by a shift in the equilibrium concentration of a hypothetical inhibitor fructose-1,6-bisphosphate3- (uncomplexed), resulting in a change of the activation state of the enzyme. The interplay between a rapid effect on the concentration of the substrate and a delayed effect on the activation state enables a rigid control of stromal FBPase by stromal Mg2+ concentrations and pH. Fructose-1,6-bisphosphatase is allosterically inhibited by fructose-6-phosphate in a sigmoidal fashion, allowing a fine control of the enzyme by its product.Abbreviations Fru1,6 bis P fructose-1,6-bisphosphate - Fru6P fructose-6-phosphate - FBPase fructose-1,6-bisphosphatase Some of these results have been included in a preliminary report (Heldt et al. 1984)  相似文献   

8.
The effects of cyclic AMP-dependent phosphorylation on the structural properties of rat liver fructose-1,6-bisphosphatase were investigated by uv difference spectroscopy and circular dichroism. The incorporation of 4 mol of phosphate per mole of fructose-1,6-bisphosphatase induces a significant increase in the alpha-helix content of the enzyme without affecting its spectrophotometric properties. The addition of fructose 1,6-bisphosphate or fructose 2,6-bisphosphate also affects the conformation of the enzyme. However, both the phosphorylated and the nonphosphorylated forms exhibit similar ligand-induced conformational changes. These results show that cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase induces a specific conformational change. They also suggest that this modification does not alter the interaction of the enzyme protein with fructose 1,6-bisphosphate and fructose 2,6-bisphosphate.  相似文献   

9.
10.
Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K(m) of 0.22+/-0.03mM for inositol-1-phosphate and K(m) of 0.45+/-0.05mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC(50) approximately 60mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV).  相似文献   

11.
To understand the physiological functions of thermostable fructose-1,6-bisphosphatase (TNA1-Fbp) from Thermococcus onnurineus NA1, its recombinant enzyme was overexpressed in Escherichia coli, purified, and the enzymatic properties were characterized. The enzyme showed maximal activity for fructose-1,6-bisphosphate at 95°C and pH 8.0 with a half-life (t 1/2) of about 8 h. TNA1-Fbp had broad substrate specificities for fructose-1,6-bisphosphate and its analogues including fructose-1-phosphate, glucose-1-phosphate, and phosphoenolpyruvate. In addition, its enzyme activity was increased five-fold by addition of 1 mM Mg2+, while Li+ did not enhance enzymatic activity. TNA1-Fbp activity was inhibited by ATP, ADP, and phosphoenolpyruvate, but AMP up to 100 mM did not have any effect. TNA1-Fbp is currently defined as a class V fructose-1,6-bisphosphatase (FBPase) because it is very similar to FBPase of Thermococcus kodakaraensis KOD1 based on sequence homology. However, this enzyme shows a different range of substrate specificities. These results suggest that TNA1-Fbp can establish new criterion for class V FBPases.  相似文献   

12.
Human fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) is a key gluconeogenic enzyme, responsible for the hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate, and thus presents an opportunity for the development of novel therapeutics focused on lowering the hepatic glucose production in type 2 diabetics. In its active form FBPase exists as a homotetramer and is allosterically regulated by AMP. In an HTS campaign aromatic sulfonylureas have been identified as FBPase inhibitors mimicking AMP. By bridging two adjacent allosteric binding sites using two aromatic sulfonylureas as anchor units and covalently linking them, it was possible to obtain dual binding AMP site inhibitors that exhibit a strong inhibitory effect.  相似文献   

13.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

14.
15.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

16.
The pea chloroplastic fructose-1,6-bisphosphatase (FBPase) antisense construct reduced the endogenous level of expression of the corresponding Arabidopsis thaliana gene. The reduction of foliar FBPase activity in the transformants T(2) and T(3) generation ranged from 20% to 42%, and correlated with lower levels of FBPase protein. FBPase antisense plants displayed different phenotypes with a clear increase in leaf fresh weight. Measurements of photosynthesis revealed a higher carbon-assimilation rate. Decreased FBPase activity boosted the foliar carbohydrate contents, with a shift in the sucrose:starch ratio, which reached a maximum of 0.99 when the activity loss was 41%. Nitrate reductase activity decreased simultaneously with an increase in glutamine synthetase activity, which could be explained in terms of ammonium assimilation regulation by sugar content. These results suggest the role of FBPase as a key enzyme in CO(2) assimilation, and also in co-ordinating carbon and nitrogen metabolism.  相似文献   

17.
Fructose-1,6-bisphosphatase (FBPase), which is mainly used to supply NADPH, has an important role in increasing L-lysine production by Corynebacterium glutamicum. However, C. glutamicum FBPase is negatively regulated at the metabolic level. Strains that overexpressed Escherichia coli fructose-1,6-bisphosphatase in C. glutamicum were constructed, and the effects of heterologous FBPase on cell growth and L-lysine production during growth on glucose, fructose, and sucrose were evaluated. The heterologous fructose-1,6-bisphosphatase is insensitive to fructose 1-phosphate and fructose 2,6-bisphosphate, whereas the homologous fructose-1,6-bisphosphatase is inhibited by fructose 1-phosphate and fructose 2,6-bisphosphate. The relative enzyme activity of heterologous fructose-1,6-bisphosphatase is 90.8% and 89.1% during supplement with 3 mM fructose 1-phosphate and fructose 2,6-bisphosphate, respectively. Phosphoenolpyruvate is an activator of heterologous fructose-1,6-bisphosphatase, whereas the homologous fructose-1,6-bisphosphatase is very sensitive to phosphoenolpyruvate. Overexpression of the heterologous fbp in wild-type C. glutamicum has no effect on L-lysine production, but fructose-1,6-bisphosphatase activities are increased 9- to 13-fold. Overexpression of the heterologous fructose-1,6-bisphosphatase increases L-lysine production in C. glutamicum lysC T311I by 57.3% on fructose, 48.7% on sucrose, and 43% on glucose. The dry cell weight (DCW) and maximal specific growth rate (μ) are increased by overexpression of heterologous fbp. A “funnel-cask” diagram is first proposed to explain the synergy between precursors supply and NADPH supply. These results lay a definite theoretical foundation for breeding high L-lysine producers via molecular target.  相似文献   

18.
We have recently established from sequence analysis that rat liver fructose-1,6-bisphosphatase contains a 24-26 residue extension beyond the COOH-terminal amino acid of other mammalian fructose-1,6-bisphosphatases that results in an increased subunit molecular weight (Rittenhouse et al. (1983) J. Biol. Chem. 258, 7648-7652). In the present work the distribution of the COOH-terminal extension of fructose-1,6-bisphosphatases was tested by subunit molecular weight analysis of the enzyme immunoprecipitated from liver extracts. Of all rodent species tested, including several Muridae other than Rattus; only the enzyme from animals of the genus Rattus was found to have the extension. Further studies on the distribution of the enzyme extension could provide a simple tool to study the phylogeny of the genus Rattus.  相似文献   

19.
An enriched IgG serum fraction obtained from rabbits immunized against pea chloroplast fructose-1,6-bisphosphatase (FBPase) was used, coupled to colloidal gold (15 nanometer particles) goat anti-rabbit IgG, to analyze by electron microscopy the location of photosynthetic FBPase in pea (Pisum sativum L.) leaf ultrathin sections. In accordance with earlier biochemical studies on distribution of FBPase activity, the enzyme was visualized both in the stromal space and bound to the chloroplast membranes. Some gold particles also appear in the cytoplasm, which can be related to the presence in the cytosol of a high molecular weight precursor of this nuclear coded enzyme.  相似文献   

20.
1. Among eleven tissues of rat, the liver type of fructose 1,6-bisphosphatase (FBPase) subunit was detected in the liver, kidney, testis, pancreas and lung by Western blot analysis using anti-(liver FBPase) or anti-(muscle FBPase) serum. 2. The muscle type of the enzyme subunit was detected only in the pancreas other than skeletal muscle. Both types of the enzyme subunit were found in the pancreas. 3. Neither anti-(liver FBPase) nor anti-(muscle FBPase) serum detected the band of enzyme subunit on the blots of the extracts of brain, heart, small intestinal mucosa, spleen and placenta. 4. FBPase is present in fetal rat liver at least as early as the 14th day of gestation. 5. In agreement with the increase in immunological staining density, the level of the enzyme activity in fetal liver increased exponentially during fetal development. 6. The muscle enzyme was not detected until the fetus reached the 19th day of gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号