首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
SUMMARY.
  • 1 Input of allochthonous material, standing stocks of benthic organic matter (BOM) and suspended paniculate organic matter (POM) were measured in a south-western Cape mountain stream from March 1986 to February 1988. The surrounding fynbos-dominated catch-ment was subjected to a prescribed burn in March 1987.
  • 2 Litter-fall in the pre-burn year exhibited a distinct seasonal pattern, with peak falls during the early summer. Although the riparian canopy was not directly affected by the fire, in that it did not burn, a heavy, aseasonal leaf-fall occurred shortly afterwards. The following summer, litter-fall was less than half that of the pre-burn summer.
  • 3 Standing stocks of BOM were significantly higher in autumn than in winter in the pre-burn year and were inversely related to discharge. Despite the heavy post-burn leaf-fall and low litter-fall during the post-burn summer, there was no significant difference between pre- and post-burn BOM standing stocks.
  • 4 Proportions and quantities of fine benthic organic matter (FBOM) in the soft BOM fraction were significantly higher in the post-burn spring, and monthly accumulation of ultra-fine benthic organic matter (UBOM) was also significantly higher in the post-burn spring and summer. These results may reflect accelerated decay rates of BOM in response to enhanced post-burn nitrate concentrations in stream water.
  • 5 Export of CPOM was low in comparison to FPOM and particularly to UPOM, and the stream appears to be highly retentive of CPOM.
  • 6 The natural resilience of the riparian vegetation minimizes the potentially disturbing effects of fire on the stream environment. As a result, the prescribed burn had a less than expected effect on both standing stocks of BOM and the stream environment in general.
  相似文献   

2.
Vidal-Abarca  M.R.  Suárez  M.L.  Gómez  R.  Guerrero  C.  Sánchez-Montoya  M.M.  Velasco  J. 《Hydrobiologia》2004,523(1-3):199-215
Hydrobiologia - During 1994 and 1998–1999, temporal changes in the benthic organic matter (BOM) and its fractions (CBOM = coarse; FBOM = fine; UBOM = ultrafine) were studied in a 354-m reach...  相似文献   

3.
Dobretsov  Sergey  Wahl  Martin 《Hydrobiologia》2001,464(1-3):27-35
We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15N content of samples collected during a 6-week 15N–NH4 tracer addition in each stream. The 15N was added during late autumn to Upper Ball Creek, a second-order stream at the Coweeta Hydrologic Lab, North Carolina, U.S.A.; during spring to Walker Branch, a first-order stream on DOE's Oak Ridge National Environmental Research Park, Tennessee; and during summer to Bear Brook, a first-order stream in the Hubbard Brook Experimental Forest, New Hampshire. FBOM was the largest component of organic matter and N standing stock in all streams. Microbial N represented the highest proportion of total N in leaves and least in FBOM in Walker Branch and Bear Brook. In Upper Ball Creek, the proportion of microbial N was higher in FBOM than in used biofilm or on leaves. Standing stock of microbial N on leaves and in FBOM ranged from 37 mg N m–2 in Bear Brook to 301 mg N m–2 in Walker Branch. Percent of detrital N in living microbial cells was directly related to total microbial biomass (fungal and bacterial biomass) determined from microscopic counts. 15N values for microbes were generally higher than for bulk detritus, which would result in higher 15N values for animals preferentially consuming or assimilating microbial cells. The proportion of 15N taken up by detritus during the 15N experiments that remained in microbial cells by the end of the experiments was highest for wood biofilm in Upper Ball Creek (69%), leaves in Walker Branch (65%) and FBOM in Upper Ball Creek (31%). Lower retention proportions (<1–25%) were observed for other substrates. Our results suggest that microbial cells associated with leaves and wood biofilm were most active in 15N–NH4 immobilization, whereas microbial cells associated with FBOM immobilized little 15N from stream water.  相似文献   

4.
Stoichiometric ratios of resources and consumers have been used to predict nutrient limitation across diverse terrestrial and aquatic ecosystems. In forested headwater streams, coarse and fine benthic organic matter (CBOM, FBOM) are primary basal resources for the food web, and the distribution and quality of these organic matter resources may therefore influence patterns of secondary production and nutrient cycling within stream networks or among biomes. We measured carbon (C), nitrogen (N), and phosphorus (P) content of CBOM and FBOM and calculated their stoichiometric ratios (C/N, C/P, N/P) from first- to fourth-order streams from tropical montane, temperate deciduous, and boreal forests, and tallgrass prairie, to compare the magnitude and variability of these resource types among biomes. We then used the ratios to predict nutritional limitations for consumers of each resource type. Across biomes, CBOM had consistently higher %C and %N, and higher and more variable C/N and C/P than FBOM, suggesting that microbial processing results in more tightly constrained elemental composition in FBOM than in CBOM. Biome-specific differences were observed in %P and N/P between the two resource pools; CBOM was lower in %P but higher in N/P than FBOM in the tropical montane and temperate deciduous forest biomes, while CBOM was higher in %P but similar in N/P than FBOM in the grassland and boreal forest biomes. Stable 13C isotopes suggest that FBOM likely derives from CBOM in tropical and temperate deciduous forest, but that additional non-detrital components may contribute to FBOM in boreal forests and grasslands. Comparisons of stoichiometric ratios of CBOM and FBOM to estimated needs of aquatic detritivores suggest that shredders feeding on CBOM are more likely to experience nutrient (N and/or P) than C limitation, whereas collector–gatherers consuming FBOM are more likely to experience C than N and/or P limitation. Our results suggest that differences in basal resource elemental content and stoichiometric ratios have the potential to affect consumer production and ecosystem rates of C, N, and P cycling in relatively consistent ways across diverse biomes.  相似文献   

5.
Allochthonous input and benthic coarse particulate organic matter (CPOM) standing stocks were investigated in a first-order stream in South Africa between May 1984 and April 1985. Monthly falls into the stream of all litter types (total) ranged from 11 (September) to 79 g m–2 (March). Total annual litter fall was 426 g dry weight, which corresponds to 1.2 g m–2 d–1. Flowers, fruits and seeds contributed 37 g m–2, woody debris, 122 g m–2, and leaves 267 g m–2 to this total. Leaf fall from native trees, which accounted for approximately 57% of total litter input (244 g m–2 a–1), was significantly higher in summer than in winter. The summer peak in leaf fall recorded is far smaller and more protracted than the autumnal peak recorded for many Northern Hemisphere streams.Monthly total standing stocks of CPOM ranged from 14 g dry weight m–2 in January to 69 g m–2 in August, and a mean total CPOM standing stock of 41 g m–2 mth–1 was estimated. This comprised 18 g m–2 mth–1 soft litter, and 23 g m–2 mth–1 hard litter. CPOM standing stocks showed no seasonal trends, and with the exception of two species, standing stocks of endemic leaf species reflected their contributions to the total litter fall. Contrary to earlier reports for streams in the Fynbos Biome, Window Stream has CPOM standing stocks well within the ranges reported for low-order streams worldwide.  相似文献   

6.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

7.
Understanding spatial and temporal variation in the trophic base of stream food webs is critical for predicting population and community stability, and ecosystem function. We used stable isotope ratios (13C/12C, and 15N/14N) to characterize the trophic base of two streams in the Ozark Mountains of northwest Arkansas, U.S.A. We predicted that autochthonous resources would be more important during the spring and summer and allochthonous resources would be more important in the winter due to increased detritus inputs from the riparian zone during autumn leaf drop. We predicted that stream communities would demonstrate increased reliance on autochthonous resources at sites with larger watersheds and greater canopy openness. The study was conducted at three low-order sites in the Mulberry River Drainage (watershed area range: 81–232 km2) seasonally in 2006 and 2007. We used circular statistics to examine community-wide shifts in isotope space among fish and invertebrate consumers in relation to basal resources, including detritus and periphyton. Mixing models were used to quantify the relative contribution of autochthonous and allochthonous energy sources to individual invertebrate consumers. Significant isotopic shifts occurred but results varied by season and site indicating substantial variation in the trophic base of stream food webs. In terms of temporal variation, consumers shifted toward periphyton in the summer during periods of low discharge, but results varied during the interval between summer and winter. Our results did not demonstrate increased reliance on periphyton with increasing watershed area or canopy openness, and detritus was important at all the sites. In our study, riffle–pool geomorphology likely disrupted the expected spatial pattern and stream drying likely impacted the availability and distribution of basal resources.  相似文献   

8.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

9.
A manipulative field experiment to test for trophic cascading effects of predatory fish on detritus processing by benthic invertebrates was performed in stream channels running through a wetland forest in northern Japan. To control for fish effects on benthic invertebrates, two simple treatments (fish-present and fish-absent) were established for 4 weeks, with two common predatory fish, rainbow trout (Oncorhynchus mykiss) and freshwater sculpin (Cottus nozawae), being introduced into and excluded from stream cages. At the end of experiment, the biomass of the dominant detritivore, an amphipod (Jesogammarus jezoensis), was significantly less in the fish-present treatment (0.56 g m–2 in dry mass on average) than that in the fish-absent treatment (1.32 g m–2), there being no significant treatment effect evident for the second-dominant detritivore, coleopteran larvae (Optioservus kubotai). The loss of oak leaves (Quercus crispla) from litter bags in the fish-present treatment (0.31 g week–1 in dry mass on average) was significantly less than in the fish-absent treatment (0.54 g week–1). Predator-induced lower biomass and likely lowered foraging activities of the J. jezoensis were responsible for the suppression of litter processing efficiency. In contrast, the standing crop of fine particulate organic matter did not differ significantly between the treatments. The experimental results revealed that the predatory fish had an indirect but significant effect on leaf litter processing in the stream.  相似文献   

10.
Vidal-Abarca  M. R.  Suárez  M. L.  Guerrero  C.  Velasco  J.  Moreno  J. L.  Millán  A.  Perán  A. 《Hydrobiologia》2001,455(1-3):71-78
Annual variations in the concentration of dissolved (DOC) and particulate organic carbon (CPOC = Coarse; FPOC = Fine; UPOC = Ultrafine) were studied in a 100 m-reach of the Chicamo stream, an intermittent saline stream in southeast Spain. DOC represented the most important fraction of organic carbon flowing in the Chicamo stream (>98%), with concentrations of about 1.7 mgC l–1 during most of the year, reaching 2.5 mgC l–1 in summer. One high flow episode during a rain storm in winter was characterized by a considerably increased concentration of DOC (9.4 mgC l–1). CPOC was the dominant POC fraction. Positive and significant correlations were found for DOC and discharge, which support the idea of allochthonous inputs due to floods. There was no significant correlation between POC and discharge. No significant correlations were found for DOC or POC with the physico-chemical parameters measured, while a negative significant correlation was found between DOC and temperature. The export of total organic carbon from the drainage basin of the Chicamo stream was low (6.2 × 10–4 gC m–2 yr–1) and typical of streams in arid and semi-arid regions. The results of a Principal Component Analysis defined three different phases. The first consisted of short periods, during which floods provide pulses of allochthonous organic carbon and nutrients, the second a dry phase (summer), defined by biotic interactions, during which the stream could acts as a `sink' of organic matter, and the third and final phase which is characterised by hydrological stability.  相似文献   

11.
Rosas  Keysa G.  Colón-Gaud  Checo  Ramírez  Alonso 《Hydrobiologia》2020,847(8):1961-1975

The relative importance of allochthonous and autochthonous resources in fueling tropical headwater streams remains an open topic. We combined estimates of secondary production and assessment of its trophic basis to determine which resources were responsible for animal production. We studied benthic insect assemblages in two streams in the Luquillo Experimental Forest, Puerto Rico. Habitat-weighted production estimates were similar in both streams (528.5 and 591.5 mg m−2 year−1), but production was over twice as high in pool versus riffle habitats. The mayfly Neohagenulus (Leptophlebiidae) was a major contributor to total production (259.1 and 352.2 mg m−2 year−1). All taxa relied heavily on amorphous detritus and plant tissue. Aquatic insect production was similar to that reported for shrimp assemblages in the same study area, but low relative to temperate region estimates. The trophic basis of production appears to be allochthonous organic matter, which agrees with the small size and closed canopy cover over the study streams. This is the first study quantifying the production and trophic basis of the non-shrimp macroinvertebrate assemblage in tropical island streams. We also provide support for the importance of riparian vegetation as the main energy sources for stream tropical stream food webs.

  相似文献   

12.
Allochthonous inputs of detritus represent an important energy source for streams in forested regions, but dynamics of these materials are not well studied in neotropical headwater streams. As part of the tropical amphibian declines in streams (TADS) project, we quantified benthic organic matter standing stocks and organic seston dynamics in four Panamanian headwater streams, two with (pre-amphibian decline) and two without (post-decline) healthy amphibian assemblages. We also measured direct litterfall and lateral litter inputs in two of these streams. Continuous litterfall and monthly benthic samples were collected for 1 year, and seston was collected 1–3 times/month for 1 year at or near baseflow. Direct litterfall was similar between the two streams examined, ranging from 934–1,137 g DM m−2 y−1. Lateral inputs were lower, ranging from 140–187 g DM m−1 y−1. Dead leaves (57–60%), wood (24–29%), and green leaves (8–9%) contributed most to inputs, and total inputs were generally higher during the rainy season. Annual habitat-weighted benthic organic matter standing stocks ranged from 101–171 g AFDM m−2 across the four study reaches, with ∼4 × higher values in pools compared to erosional habitats. Total benthic organic matter (BOM) values did not change appreciably with season, but coarse particulate organic matter (CPOM, >1 mm) generally decreased and very fine particulate organic matter (VFPOM, 1.6–250 μm) generally increased during the dry season. Average annual seston concentrations ranged from 0.2–0.6 mg AFDM l−1 (fine seston, <754 μm >250 μm) and 2.0–4.7 mg AFDM l−1 (very fine, <250 μm >1.6 μm), with very fine particles composing 85–92% of total seston. Quality of fine seston particles in the two reaches where tadpoles were present was significantly higher (lower C/N) than the two where tadpoles had been severely reduced (P = 0.0028), suggesting that ongoing amphibian declines in this region are negatively influencing the quality of particles exported from headwaters. Compared to forested streams in other regions, these systems receive relatively high amounts of allochthonous litter inputs but have low in-stream storage. Handling editor: J. Padisak  相似文献   

13.
López  Eva S.  Pardo  Isabel  Felpeto  Nuria 《Hydrobiologia》2001,464(1-3):51-61
Litter processing was examined in autumn–winter and spring–summer in a second order stream in Galicia (NW Spain). We compared decay rate and nutrient dynamics of green leaves of several deciduous (riparian: Alnus glutinosa, Betula alba and Populus×canadensis; terrestrial: Castanea sativa, Quercus robur), and evergreen tree species (terrestrial: Pinus radiata and Eucalyptus nitens), in addition to ray-grass (Lolium perenne). In the autumn–winter period, the decay rates (–k) ranged between 0.0086 degree-days–1 for poplar, and 0.0019 degree-days–1 for birch leaves. Alder showed the most rapid breakdown in spring–summer (0.0124 degree-days–1), and pine the slowest (0.0016 degree-days–1). Deciduous species exhibited general higher processing rates than evergreen species and ray-grass. The initial nitrogen and phosphorus contents were higher in riparian species leaves and ray-grass, being higher in spring (2.28±0.14% and 0.24±0.04% of nitrogen and phosphorus, respectively) than in autumn (1.88±0.36% of nitrogen and 0.18±0.03% of phosphorus). A significant correlation coefficient was found only between mean nitrogen leaf packs contents during incubation and decay rates (r=0.61; p=0.012).In deciduous species, processing was faster during the spring–summer than in the autumn–winter period, which may be attributed to the greater nutritional value and less consistency of the leaves during this season. Within evergreen species, pine had a significantly faster processing rate in autumn, attributed in this study to greater physical fragmentation of the needles. Ray-grass and eucalyptus did not exhibit any seasonal differences in processing rate.During the spring–summer period, litterfall inputs are quantitatively less important than during the autumn–winter, but due to high retention and fast breakdown during the spring–summer, green inputs should contribute substantially to nutrient incorporation and cycling in benthic communities.  相似文献   

14.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

15.
The life history characteristics, population dynamics and production of Pontoporeia hoyi in Lake George, New York, were studied from May 1981 through October 1982. P. hoyi, in terms of both density and standing crop, is the most prevalent member of the deep water macrobenthos of Lake George. It reproduces in the winter, with young being released in the late winter-early spring. At the southernmost study site, young released in the spring grew to 6–7 mm in length and bred during their first winter. At the remaining sites, P. hoyi required two years to complete its life cycle. This difference in life history characteristics can be related to food availability and temperature differences. The open waters of the south end of Lake George are not only more productive but are also more closely associated with the littoral zone, providing a wealth of bacteria-rich detritus for benthic deposit feeders. The greater food availability in the south basin of Lake George is reflected in significantly larger brood sizes and smaller size at maturity for P. hoyi populations from the south end of the lake.The southernmost study site has significantly greater P. hoyi density and standing crop than all other sites. The cohort of the year dominated density and standing crop at the southern site while the cohort of the previous year dominated standing crop at the other sites. Peak abundance ranged from 600 · m–2 at the north site to 2 900 · m–2 at the south site. Cohort production ranged from 2g · m–2 at the north site to 15g · m–2 at the south site.  相似文献   

16.
Changes in stream benthic organic matter following watershed disturbance   总被引:4,自引:0,他引:4  
Benthic organic matter was collected quarterly from streams draining a 9-yr-old clearcut, an 18-yr-old "old-field", a 25-yr-old successional forest, and two reference watersheds at Coweeta Hydrologic Laboratory in the Appalachian Mountains of North Carolina. USA. Samples were separated into large benthic organic matter (LBOM >1 mm) and fine benthic organic matter (FBOM <1 mm). An additional survey of large (>5 em diam.) and small (1–5 cm diam.) wood was conducted. Standing stocks of LBOM ranged from 124 to 235 g AFDM m−2 (ash tree dry mass) and were significantly higher in streams draining reference watersheds and the successional forest than in either the recent clearcut or old-field. Reference sites exhibited LBOM peaks in late autumn and spring. No seasonal patterns were observed in disturbed streams. Standing stocks of FBOM averaged 113 to 387 g AFDM m−2, and the stream draining the successional forest had significantly higher FBOM levels than the other sites. In reference streams, FBOM abundance peaked in spring. In disturbed streams, FBOM standing stocks were highest in summer or late autumn. Standing stocks of large wood ranged from 0 to 3956 g AFDM m−2 and were significantly higher in the reference streams than in streams draining the old-field or successional forest. Small wood averaged 11 to 342 g AFDM m−2 and was significantly lower in the stream draining the old-field than at the other sites. Comparisons of organic matter inputs with standing stocks indicated that disturbed streams at Coweeta receive less material and process it faster than reference streams. Disturbed streams also appear to be less retentive than reference streams and exhibit a gradual decline in FBOM during the winter when large, long-duration storms combined with low particle generation rates deplete accumulated FBOM.  相似文献   

17.
A mass balance procedure was used to determine rates of nitrate depletion in the riparian zone and stream channel of a small New Zealand headwater stream. In all 12 surveys the majority of nitrate loss (56–100%) occurred in riparian organic soils, despite these soils occupying only 12% of the stream's border. This disproportionate role of the organic soils in depleting nitrate was due to two factors. Firstly, they were located at the base of hollows and consequently a disproportionately high percentage (37–81%) of the groundwater flowed through them in its passage to the stream. Secondly, they were anoxic and high in both denitrifying enzyme concentration and available carbon. Direct estimates ofin situ denitrification rate for organic soils near the upslope edge (338 mg N m–2 h–1) were much higher than average values estimated for the organic soils as a whole (0.3–2.1 mg N m–2 h–1) and suggested that areas of these soils were limited in their denitrification activity by the supply of nitrate. The capacity of these soils to regulate nitrate flux was therefore under-utilized. The majority of stream channel nitrate depletion was apparently due to plant uptake, with estimates of thein situ denitrification rate of stream sediments being less than 15% of the stream channel nitrate depletion rate estimated by mass balance.This study has shown that catchment hydrology can interact in a variety of ways with the biological processes responsible for nitrate depletion in riparian and stream ecosystems thereby having a strong influence on nitrate flux. This reinforces the view that those seeking to understand the functioning of these ecosystems need to consider hydrological phenomena.  相似文献   

18.
Leaf-pack dynamics in a southern African mountain stream   总被引:4,自引:0,他引:4  
SUMMARY 1. The occurrence, composition and invertebrate fauna of naturally-occurring leaf packs were studied over 24 months in Langrivier, a second-order mountain stream in the south-western Cape, South Africa. Langrivier is shallow and fast-flowing and stores very low levels of allochthonous detritus, although natural leaf packs form an obvious part of the energy base in the stream throughout the year. 2. The occurrence and size of the packs were influenced mainly by stream discharge and by the timing and character of leaf fall from riparian trees. Packs were smallest (minimum dry mass 17 g, minimum volume 1.7–10?5 m3) in winter when discharge was high, and largest (maximum dry mass 191 g, maximum volume 4.2–10?3 m3) in spring when discharge decreased and leaf fall from the evergreen riparian trees began. Through the year the packs covered a mean 0.41 % of the stream bed and had a mean abundance of 0.46 packs m?2 of stream bed. They were ephemeral, lasting on average <1.7 months and yet accounted for 29% of the stored detritus in the system. Wood was the dominant component of packs, and leaves at ali stages of decomposition were present throughout the year. 3. The ratio of numbers of invertebrates in packs: numbers of individuals in the benthos was very low (0.002–0.030), presumably because of the rarity and small size of the packs. Nevertheless, the density of invertebrates per unit area covered by leaf packs was consistently much higher than the density in an equivalent area of the benthos, except during peak leaf fall (October to December). 4. Experiments were undertaken with artificial leaf packs in order to determine the extent to which these simulated natural packs. Although both natural and artificial leaf packs contained a high proportion of Plecoptera (46% and 29% respectively), the natural packs contained high numbers of simuliid larvae (33% of total), whereas artificial packs had a high percentage of chironomid larvae (62%), Several other taxa regularly occurred in both types of pack but in very low numbers. In addition,  相似文献   

19.
1. We investigated the impacts of saltcedar invasion on organic matter dynamics in a spring‐fed stream (Jackrabbit Spring) in the Mojave Desert of southern Nevada, U.S.A., by experimentally manipulating saltcedar abundance. 2. Saltcedar heavily shaded Jackrabbit Spring and shifted the dominant organic matter inputs from autochthonous production that was available throughout the year to allochthonous saltcedar leaf litter that was strongly pulsed in the autumn. Specifically, reaches dominated by saltcedar had allochthonous litter inputs of 299 g ash free dry mass (AFDM) m?2 year?1, macrophyte production of 15 g AFDM m?2 year?1 and algal production of 400 g AFDM m?2 year?1, while reaches dominated by native riparian vegetation or where saltcedar had been experimentally removed had allochthonous litter inputs of 7–34 g AFDM m?2 year?1, macrophyte production of 118–425 g AFDM m?2 year?1 and algal production of 640–900 g AFDM m?2 year?1. 3. A leaf litter breakdown study indicated that saltcedar also altered decomposition in Jackrabbit Spring, mainly through its influence on litter quality rather than by altering the environment for decomposition. Decomposition rates for saltcedar were lower than for ash (Fraxinus velutina), the dominant native allochthonous litter type, but faster than for bulrush (Scirpus americanus), the dominant macrophyte in this system.  相似文献   

20.
The aim of this paper was to study the influence of environmental characteristics of the Mediterranean climate on seasonal variability of particulate organic matter abundance in a mountain stream. Coarse and fine fractions of both suspended and benthic particulate organic matter were determined on 14 occasions between February 1998 and November 1999 in a second‐order Mediterranean stream in Central Spain (Arroyo Mediano). Temporal variability of suspended organic matter followed a seasonal pattern, attributed to litter‐fall inputs, instream processing, and the hydrological regime. Suspended organic matter (SOM) and its seasonal variability fall well within the range reported for streams in temperate non‐Mediterranean deciduous forest. However, we found no seasonal trend in benthic organic matter (BOM) storage, and it seems that the amount of BOM remained fairly constant throughout the year. Reach retention (evaluated as the ratio between BOM and SOM per m2) was higher in summer during reduced stream flow, mainly due to coarse particulate organic matter storage. These observations do not differ from those reported for other headwater streams in temperate forested biomes, from which we conclude that there was no evidence of a Mediterranean influence on particulate organic matter dynamics in the Mediano stream, nor probably in other headwater Mediterranean streams. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号