首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Pomel S  Luk FC  Beckers CJ 《PLoS pathogens》2008,4(10):e1000188
Apicomplexan parasites are dependent on an F-actin and myosin-based motility system for their invasion into and escape from animal host cells, as well as for their general motility. In Toxoplasma gondii and Plasmodium species, the actin filaments and myosin motor required for this process are located in a narrow space between the parasite plasma membrane and the underlying inner membrane complex, a set of flattened cisternae that covers most the cytoplasmic face of the plasma membrane. Here we show that the energy required for Toxoplasma motility is derived mostly, if not entirely, from glycolysis and lactic acid production. We also demonstrate that the glycolytic enzymes of Toxoplasma tachyzoites undergo a striking relocation from the parasites' cytoplasm to their pellicles upon Toxoplasma egress from host cells. Specifically, it appears that the glycolytic enzymes are translocated to the cytoplasmic face of the inner membrane complex as well as to the space between the plasma membrane and inner membrane complex. The glycolytic enzymes remain pellicle-associated during extended incubations of parasites in the extracellular milieu and do not revert to a cytoplasmic location until well after parasites have completed invasion of new host cells. Translocation of glycolytic enzymes to and from the Toxoplasma pellicle appears to occur in response to changes in extracellular [K(+)] experienced during egress and invasion, a signal that requires changes of [Ca(2+)](c) in the parasite during egress. Enzyme translocation is, however, not dependent on either F-actin or intact microtubules. Our observations indicate that Toxoplasma gondii is capable of relocating its main source of energy between its cytoplasm and pellicle in response to exit from or entry into host cells. We propose that this ability allows Toxoplasma to optimize ATP delivery to those cellular processes that are most critical for survival outside host cells and those required for growth and replication of intracellular parasites.  相似文献   

2.
The nucleoside triphosphate hydrolase of Toxoplasma gondii is a potent apyrase that is secreted into the parasitophorous vacuole where it appears to be essentially inactive in an oxidized form. Recent evidence shows that nucleoside triphosphate hydrolase can be activated by dithiothreitol in vivo. On reduction of the enzyme, there is a rapid depletion of host cell ATP. Previous results also demonstrate a dithiothreitol induced egress of parasites from the host cell with a concurrent Ca2+ flux, postulated to be a consequence of the release of ATP-dependent Ca2+ stores within the tubulovesicular network of the parasitophorous vacuole. Reduction of the nucleoside triphosphate hydrolase appears crucial for its activation; however, the exact mechanism of reduction/activation has not been determined. Using a variety of techniques, we show here that glutathione promoters activate a Ca2+ flux and decrease ATP levels in infected human fibroblasts. We further show the in vitro activation of nucleoside triphosphate hydrolase by endogenous reducing agents, one of which we postulate might be secreted into the PV by T. gondii. Our findings suggest that the reduction of the parasite nucleoside triphosphate hydrolase, and ultimately parasite egress, is under the control of the parasites themselves.  相似文献   

3.
The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.  相似文献   

4.
Toxoplasma gondii is an obligate intracellular pathogen within the phylum Apicomplexa. Invasion and egress by this protozoan parasite are rapid events that are dependent upon parasite motility and appear to be directed by fluctuations in intracellular [Ca(2+)]. Treatment of infected host cells with the calcium ionophore A23187 causes the parasites to undergo rapid egress in a process termed ionophore-induced egress (IIE). In contrast, when extracellular parasites are exposed to this ionophore, they quickly lose infectivity (termed ionophore-induced death [IID]). From among several Iie(-) mutants described here, two were identified that differ in several attributes, most notably in their resistance to IID. The association between the Iie(-) and Iid(-) phenotypes is supported by the observation that two-thirds of mutants selected as Iid(-) are also Iie(-). Characterization of three distinct classes of IIE and IID mutants revealed that the Iie(-) phenotype is due to a defect in a parasite-dependent activity that normally causes infected host cells to be permeabilized just prior to egress. Iie(-) parasites underwent rapid egress when infected cells were artificially permeabilized by a mild saponin treatment, confirming that this step is deficient in the Iie(-) mutants. A model is proposed that includes host cell permeabilization as a critical part of the signaling pathway leading to parasite egress. The fact that Iie(-) mutants are also defective in early stages of the lytic cycle indicates some commonality between these normal processes and IIE.  相似文献   

5.
The obligate intracellular parasite Toxoplasma gondii is an important pathogen of humans and animals. Some of the devastating consequences of toxoplasmosis are in part due to the lysis of the host cell during parasite egress. The process of egress is poorly understood and since it is asynchronous in tissue culture its study has been limited to those conditions that induce it, such as artificial permeabilisation of the host cell and induction of calcium fluxes with ionophores. Given that permeabilisation leads to egress by the activation of motility upon a drop in host cell potassium concentration, we investigated whether the ionophore nigericin, which selectively causes efflux of potassium from the cell without the need for permeabilisation, would cause egress. Nigericin effectively causes intracellular parasites to exit their host cell within 30 min of treatment with the drug. Our results show that nigericin-induced egress depends on an efflux of potassium from the cell and requires phospholipase C function and parasite motility. This novel method of inducing and synchronising egress mimics the effect of artificial permeabilisation in all respects. Nevertheless, since the membrane remains intact during the treatment, in our nigericin-induced egress we are able to detect parasite-dependent permeabilisation of the host cell, a known step in induced egress. In addition, consistent with the model that loss of host cell potassium leads to egress through the activation of intraparasitic calcium fluxes, a previously isolated Toxoplasma mutant lacking a sodium hydrogen exchanger and defective in responding to calcium fluxes does not undergo nigericin-induced egress. Thus, the discovery that nigericin induces egress presents a novel assay that allows for the genetic and biochemical analysis of the signalling mechanisms that lead to the induction of motility and egress.  相似文献   

6.
7.
Heaslip AT  Nishi M  Stein B  Hu K 《PLoS pathogens》2011,7(9):e1002201
Protozoa in the phylum Apicomplexa are a large group of obligate intracellular parasites. Toxoplasma gondii and other apicomplexan parasites, such as Plasmodium falciparum, cause diseases by reiterating their lytic cycle, comprising host cell invasion, parasite replication, and parasite egress. The successful completion of the lytic cycle requires that the parasite senses changes in its environment and switches between the non-motile (for intracellular replication) and motile (for invasion and egress) states appropriately. Although the signaling pathway that regulates the motile state switch is critical to the pathogenesis of the diseases caused by these parasites, it is not well understood. Here we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). AKMT depletion greatly inhibits activation of motility, compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Interestingly, AKMT redistributes from the apical complex to the parasite body rapidly in the presence of egress-stimulating signals that increase [Ca2+] in the parasite cytoplasm, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes.  相似文献   

8.
The obligate intracellular parasite Toxoplasma gondii chronically infects up to one-third of the global population, can result in severe disease in immunocompromised individuals, and can be teratogenic. In this study, we demonstrate that death receptor ligation in T. gondii-infected cells leads to rapid egress of infectious parasites and lytic necrosis of the host cell, an active process mediated through the release of intracellular calcium as a consequence of caspase activation early in the apoptotic cascade. Upon acting on infected cells via death receptor- or perforin-dependent pathways, T cells induce rapid egress of infectious parasites able to infect surrounding cells, including the Ag-specific effector cells.  相似文献   

9.
The effect of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C, was investigated on cyst development of the Prugniaud strain of Toxoplasma gondii in vitro. Following treatment with the inhibitor 24 h after cell infection, cyst development was affected as assessed by staining with the bradyzoite-specific mAb CC2: the CC2-reactive antigen was shown to be differently located (in the wall versus the matrix under control conditions). This correlated with a decrease in parasite multiplication induced by D609. Pretreatment of the parasites with D609 inhibited their entry into the host cells, whereas pretreatment of the host cells enhanced the intracellular multiplication of the para sites, without any effect on cell invasion or cyst formation. Our results suggest a crucial role for phosphatidylcholine-specific phospholipase C in the pathophysiology of toxoplasmosis.  相似文献   

10.
The process by which the intracellular parasite Toxoplasma gondii exits its host cell is central to its propagation and pathogenesis. Experimental induction of motility in intracellular parasites results in parasite egress, leading to the hypothesis that egress depends on the parasite's actin-dependent motility. Using a novel assay to monitor egress without experimental induction, we have established that inhibiting parasite motility does not block this process, although treatment with actin-disrupting drugs does delay egress. However, using an irreversible actin inhibitor, we show that this delay is due to the disruption of host cell actin alone, apparently resulting from the consequent loss of membrane tension. Accordingly, by manipulating osmotic pressure, we show that parasite egress is delayed by releasing membrane tension and promoted by increasing it. Therefore, without artificial induction, egress does not depend on parasite motility and can proceed by mechanical rupture of the host membrane.  相似文献   

11.
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.  相似文献   

12.
Apicomplexan parasites, including Toxoplasma gondii, apically attach to their host cells before invasion. Recent studies have implicated the contents of micronemes, which are small secretory organelles confined to the apical region of the parasite, in the process of host cell attachment. Here, we demonstrate that microneme discharge is regulated by parasite cytoplasmic free Ca2+ and that the micronemal contents, including the MIC2 adhesin, are released through the extreme apical tip of the parasite. Microneme secretion was triggered by Ca2+ ionophores in both the presence and the absence of external Ca2+, while chelation of intracellular Ca2+ prevented release. Mobilization of intracellular calcium with thapsagargin or NH4Cl also triggered microneme secretion, indicating that intracellular calcium stores are sufficient to stimulate release. Following activation of secretion by the Ca2+ ionophore A23187, MIC2 initially occupied the apical surface of the parasite, but was then rapidly treadmilled to the posterior end and released into the culture supernatant. This capping and release of MIC2 by ionophore-stimulated tachyzoites mimics the redistribution of MIC2 that occurs during attachment and penetration of host cells, and both events are dependent on the actin-myosin cytoskeleton of the parasite. These studies indicate that microneme release is a stimulus-coupled secretion system responsible for releasing adhesins involved in cell attachment.  相似文献   

13.
Protozoan parasites belong to the most widespread and devastating human pathogens. Their ability to manipulate host responses and establish infection in their hosts continues to puzzle researchers. Recent developments of experimental model systems are contributing to the discovery of new aspects of the biology of parasite dissemination. Here, we review current knowledge on strategies utilized by the apicomplexan parasite Toxoplasma gondii to disseminate and establish infection in its host. Recent findings have revealed intricate mechanisms by which this obligate intracellular protozoan sequesters cellular functions of the immune system to assure propagation. These mechanisms include the hijacking of migratory leucocytes, modulation of migratory properties of infected cells and rapid transfer of parasites between different leucocyte populations by cytotoxicity‐induced parasite egress. Collectively, Toxoplasma strikes a delicate balance, assuring efficient dissemination and establishment of asymptomatic lifelong infection in its host while protecting its intracellular entity and limiting host pathology.  相似文献   

14.
Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait.  相似文献   

15.
Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.  相似文献   

16.
Toxoplasma gondii modifies its host cell to suppress its ability to become activated in response to IFN-γ and TNF-α and to develop intracellular antimicrobial effectors, including NO. Mechanisms used by T. gondii to modulate activation of its infected host cell likely underlie its ability to hijack monocytes and dendritic cells during infection to disseminate to the brain and CNS where it converts to bradyzoites contained in tissue cysts to establish persistent infection. To identify T. gondii genes important for resistance to the effects of host cell activation, we developed an in vitro murine macrophage infection and activation model to identify parasite insertional mutants that have a fitness defect in infected macrophages following activation but normal invasion and replication in naive macrophages. We identified 14 independent T. gondii insertional mutants out of >8000 screened that share a defect in their ability to survive macrophage activation due to macrophage production of reactive nitrogen intermediates (RNIs). These mutants have been designated counter-immune mutants. We successfully used one of these mutants to identify a T. gondii cytoplasmic and conoid-associated protein important for parasite resistance to macrophage RNIs. Deletion of the entire gene or just the region encoding the protein in wild-type parasites recapitulated the RNI-resistance defect in the counter-immune mutant, confirming the role of the protein in resistance to macrophage RNIs.  相似文献   

17.
The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways1-5. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca2+, a signal that is also critical for host cell invasion6-8. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress9. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches10-12. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress13. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology11,14,15, only recently has genetic mapping of mutations underlying the phenotypes become routine16-18. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants with a temperature-sensitive egress phenotype13. The challenge for egress screens is to separate egressed from non-egressed parasites, which is complicated by fast re-invasion and general stickiness of the parasites to host cells. A previously established egress screen was based on a cumbersome series of biotinylation steps to separate intracellular from extracellular parasites11. This method also did not generate conditional mutants resulting in weak phenotypes. The method described here overcomes the strong attachment of egressing parasites by including a glycan competitor, dextran sulfate (DS), that prevents parasites from sticking to the host cell19. Moreover, extracellular parasites are specifically killed off by pyrrolidine dithiocarbamate (PDTC), which leaves intracellular parasites unharmed20. Therefore, with a new phenotypic screen to specifically isolate parasite mutants with defects in induced egress, the power of genetics can now be fully deployed to unravel the molecular mechanisms underlying host cell egress.  相似文献   

18.
Apicomplexan parasites exhibit actin-dependent gliding motility that is essential for migration across biological barriers and host cell invasion. Profilins are key contributors to actin polymerization, and the parasite Toxoplasma gondii possesses a profilin-like protein that is recognized by Toll-like receptor TLR11 in the host innate immune system. Here, we show by conditional disruption of the corresponding gene that T.gondii profilin, while not required for intracellular growth, is indispensable for gliding motility, host cell invasion, active egress from host cells, and virulence in mice. Furthermore, parasites lacking profilin are unable to induce TLR11-dependent production in vitro and in vivo of the defensive host cytokine interleukin-12. Thus, profilin is an essential element of two aspects of T. gondii infection. Like bacterial flagellin, profilin plays a role in motility while serving as a microbial ligand recognized by the host innate immune system.  相似文献   

19.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.  相似文献   

20.
Konrad C  Wek RC  Sullivan WJ 《Eukaryotic cell》2011,10(11):1403-1412
Toxoplasmosis is a significant opportunistic infection caused by the protozoan parasite Toxoplasma gondii, an obligate intracellular pathogen that relies on host cell nutrients for parasite proliferation. Toxoplasma parasites divide until they rupture the host cell, at which point the extracellular parasites must survive until they find a new host cell. Recent studies have indicated that phosphorylation of Toxoplasma eukaryotic translation initiation factor 2-alpha (TgIF2α) plays a key role in promoting parasite viability during times of extracellular stress. Here we report the cloning and characterization of a TgIF2α kinase designated TgIF2K-D that is related to GCN2, a eukaryotic initiation factor 2α (eIF2α) kinase known to respond to nutrient starvation in other organisms. TgIF2K-D is present in the cytosol of both intra- and extracellular Toxoplasma parasites and facilitates translational control through TgIF2α phosphorylation in extracellular parasites. We generated a TgIF2K-D knockout parasite and demonstrated that loss of this eIF2α kinase leads to a significant fitness defect that stems from an inability of the parasite to adequately adapt to the environment outside host cells. This phenotype is consistent with that reported for our nonphosphorylatable TgIF2α mutant (S71A substitution), establishing that TgIF2K-D is the primary eIF2α kinase responsible for promoting extracellular viability of Toxoplasma. These studies suggest that eIF2α phosphorylation and translational control are an important mechanism by which vulnerable extracellular parasites protect themselves while searching for a new host cell. Additionally, TgIF2α is phosphorylated when intracellular parasites are deprived of nutrients, but this can occur independently of TgIF2K-D, indicating that this activity can be mediated by a different TgIF2K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号