首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GC Vanlerberghe  L McIntosh    JY Yip 《The Plant cell》1998,10(9):1551-1560
Using in organellar assays, we found that significant tobacco alternative oxidase (AOX) activity is dependent on both reduction of a putative regulatory disulfide bond and the presence of pyruvate, which may interact with a Cys sulfhydryl. This redox modulation and pyruvate activation thus may be important in determining the partitioning of electrons to AOX in vivo. To investigate these regulatory mechanisms, we generated tobacco plants expressing mutated AOX proteins. Mutation of the most N-terminal Cys residue (Cys-126) to an Ala residue produced an AOX that could not be converted to the disulfide-linked form, thus identifying this Cys residue as being responsible for redox modulation. Although this mutation might be expected to produce an AOX with constitutive high activity in the presence of pyruvate, we found it to have minimal in organellar activity in the presence of pyruvate. Nonetheless, the Cys-126 mutation did not appear to have compromised the catalytic function of AOX, given that cells expressing the protein displayed high rates of cyanide-resistant respiration in vivo. The striking difference between in vivo and in organellar results suggests that an additional mechanism(s), as yet unidentified by in organellar assays, may promote activity in vivo. Mutation of the Cys residue nearest the presumptive active site (Cys-176) to an Ala residue did not prevent disulfide bond formation or affect the ability of AOX to be stimulated by pyruvate, indicating that this Cys residue is involved in neither redox modulation nor pyruvate activation.  相似文献   

2.
Plant alternative oxidase (AOX) activity in isolated mitochondria is regulated by carboxylic acids, but reaction and regulatory mechanisms remain unclear. We show that activity of AOX protein purified from thermogenic Arum maculatum spadices is sensitive to pyruvate and glyoxylate but not succinate. Rapid, irreversible AOX inactivation occurs in the absence of pyruvate, whether or not duroquinol oxidation has been initiated, and is insensitive to duroquinone. Our data indicate that pyruvate stabilises an active conformation of AOX, increasing the population of active protein in a manner independent of reducing substrate and product, and are thus consistent with an exclusive effect of pyruvate on the enzyme’s apparent Vmax.  相似文献   

3.
Transgenic Nicotiana tabacum (cv Petit Havana SR1) containing high levels of mitochondrial alternative oxidase (AOX) protein due to the introduction of a sense transgene(s) of Aox1, the nuclear gene encoding AOX, were used to investigate mechanisms regulating AOX activity. After purification of leaf mitochondria, a large proportion of the AOX protein was present as the oxidized (covalently associated and less active) dimer. High AOX activity in these mitochondria was dependent on both reduction of the protein by DTT (to the noncovalently associated and more active dimer) and its subsequent activation by certain [alpha]-keto acids, particularly pyruvate. Reduction of AOX to its more active form could also be mediated by intramitochondrial reducing power generated by the oxidation of certain tricarboxylic acid cycle substrates, most notably isocitrate and malate. Our evidence suggests that NADPH may be specifically required for AOX reduction. All of the above regulatory mechanisms applied to AOX in wild-type mitochondria as well. Transgenic leaves lacking AOX due to the introduction of an Aox1 antisense transgene or multiple sense transgenes were used to investigate the potential physiological significance of the AOX-regulatory mechanisms. Under conditions in which respiratory carbon metabolism is restricted by the capacity of mitochondrial electron transport, feed-forward activation of AOX by mitochondrial reducing power and pyruvate may act to prevent redirection of carbon metabolism, such as to fermentative pathways.  相似文献   

4.
5.
Cyanide-resistant respiration was studied in mitochondria isolated from the roots of bean plants ( Phaseolus vulgaris L. cv. Złota Saxa) grown hydroponically up to 16 days on a phosphate-sufficient (+P, control) or phosphate-deficient (−P) medium. Western blotting indicated that the alternative oxidase (AOX) was present only in its reduced (active) form, both in phosphate-sufficient and phosphate-deficient roots, but in the latter, the amount of AOX protein was greater. Addition of pyruvate to the isolation, washing and reaction media made mitochondria from +P roots cyanide-insensitive, similar to mitochondria from −P roots. The doubled activity of NAD-malic enzyme (NAD-ME) in −P compared with +P root mitochondria may suggest increased pyruvate production in −P mitochondria. Lower cytochrome c oxidase (COX) activity and no uncoupler effect on respiration indicated limited cytochrome chain activity in −P mitochondria. In −P mitochondria, the oxygen uptake decreased and the level of Q reduction increased from 60 to 80%. With no pyruvate present (AOX not fully activated), inhibition of the cytochrome pathway resulted in an increased level of the ratio of reduced ubiquinone (Qr) to total ubiquinone (Qt) (Qr/Qt) in +P mitochondria, but did not change Qr/Qt in −P mitochondria. When pyruvate was present, the kinetics for AOX were similar in mitochondria from −P and +P roots. It is suggested that AOX participation in −P respiration may provide an acclimation to phosphate deficiency. Stabilization of the ubiquinone reduction level by AOX might prevent the harmful effect of an increased formation of reactive oxygen species.  相似文献   

6.
Oscar Juárez  Federico Martínez 《BBA》2004,1658(3):244-251
Ustilago maydis mitochondria contain the four classical components of the electron transport chain (complexes I, II, III, and IV), a glycerol phosphate dehydrogenase, and two alternative elements: an external rotenone-insensitive flavone-sensitive NADH dehydrogenase (NDH-2) and an alternative oxidase (AOX). The external NDH-2 contributes as much as complex I to the NADH-dependent respiratory activity, and is not modulated by Ca2+, a regulatory mechanism described for plant NDH-2, and presumed to be a unique characteristic of the external isozyme. The AOX accounts for the 20% residual respiratory activity after inhibition of complex IV by cyanide. This residual activity depends on growth conditions, since cells grown in the presence of cyanide or antimycin A increase its proportion to about 75% of the uninhibited rate. The effect of AMP, pyruvate and DTT on AOX was studied. The activity of AOX in U. maydis cells was sensitive to AMP but not to pyruvate, which agrees with the regulatory characteristics of a fungal AOX. Interestingly, the presence of DTT during cell permeabilisation protected the enzyme against inactivation.The pathways of quinone reduction and quinol oxidation lack an additive behavior. This is consistent with the competition of the respiratory components of each pathway for the quinol/quinone pool.  相似文献   

7.
The Mia40 import pathway facilitates the import and oxidative folding of cysteine-rich protein substrates into the mitochondrial intermembrane space. Here we describe the in vitro and in organello oxidative folding of Cmc1, a twin CX(9)C-containing substrate, which contains an unpaired cysteine. In vitro, Cmc1 can be oxidized by the import receptor Mia40 alone when in excess or at a lower rate by only the sulfhydryl oxidase Erv1. However, physiological and efficient Cmc1 oxidation requires Erv1 and Mia40. Cmc1 forms a stable intermediate with Mia40 and is released from this interaction in the presence of Erv1. The three proteins are shown to form a ternary complex in mitochondria. Our results suggest that this mechanism facilitates efficient formation of multiple disulfides and prevents the formation of non-native disulfide bonds.  相似文献   

8.
The intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds. It was unclear what the mechanisms are that ensure that proteins are released from Mia40 in a fully oxidized form. In this work, we dissect the stage of the oxidative folding relay, in which Mia40 binds to its substrate. We identify dynamics of the Mia40–substrate intermediate complex. Our experiments performed in a native environment, both in organello and in vivo, show that Erv1 directly participates in Mia40–substrate complex dynamics by forming a ternary complex. Thus Mia40 in cooperation with Erv1 promotes the formation of two disulfide bonds in the substrate protein, ensuring the efficiency of oxidative folding in the intermembrane space of mitochondria.  相似文献   

9.
The oxidation of pyruvate is mediated by the pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) whose catalytic activity is influenced by phosphorylation and by product inhibition. 2-Oxoglutarate and 3-hydroxybutyrate are readily utilized by brain mitochondria and inhibit pyruvate oxidation. To further elucidate the regulatory behavior of brain PDHC, the effects of 2-oxoglutarate and 3-hydroxyburyrate on the flux of PDHC (as determined by [1-14C]pyruvate decarboxylation) and the activation (phosphorylation) state of PDHC were determined in isolated, non-synaptic cerebro-cortical mitochondria in the presence or absence of added adenine nucleotides (ADP or ATP). [1-14C]Pyruvate decarboxylation by these mitochondria is consistently depressed by either 3-hydroxybutyrate or 2-oxoglutarate in the presence of ADP when mitochondrial respiration is stimulated. In the presence of exogenous ADP, 3-hydroxybutyrate inhibits pyruvate oxidation mainly through the phosphorylation of PDHC, since the reduction of the PDHC flux parallels the depression of PDHC activation state under these conditions. On the other hand, in addition to the phosphorylation of PDHC, 2-oxoglutarate may also regulate pyruvate oxidation by product inhibition of PDHC in the presence of 0.5 mM pyruvate plus ADP or 5 mM pyruvate alone. This conclusion is based upon the observation that 2-oxoglutarate inhibits [1-14C]pyruvate decarboxylation to a much greater extent than that predicted from the PDHC activation state (i.e. catalytic capacity) alone. In conjunction with the results from our previous study (Lai, J. C. K. and Sheu, K.-F. R. (1985) J. Neurochem. 45, 1861–1868), the data of the present study are consistent with the notion that the relative importance of the various mechanisms that regulate brain and peripheral tissue PDHCs shows interesting differences.  相似文献   

10.
The kinetics of alternative oxidase (AOX) of Arum italicum spadices and soybean (Glycine max L.) cotyledons were studied both with intact mitochondria and with a solubilized, partially purified enzyme. Ubiquinone analogs were screened for their suitability as substrates and ubiquinol-1 was found to be most suitable. The kinetics of ubiquinol-1 oxidation via AOX in both systems followed Michaelis-Menten kinetics, suggesting that the reaction is limited by a single-step substrate reaction. The kinetics are quite different from those previously described, in which the redox state of ubiquinone-10 was monitored and an increase in substrate was accompanied by a decrease in product. The difference between the systems is discussed. Pyruvate is a potent activator of the enzyme and its presence is essential for maximum activity. The addition of pyruvate to the solubilized enzyme increased the maximum initial velocity from 6.2 [plus or minus] 1.3 to 16.9 [plus or minus] 2.8 [mu]mol O2 mg-1 protein min-1 but had little effect on the Michaelis constant for ubiquinol-1, an analog of ubiquinol, which changed from 116 [plus or minus] 73 to 157 [plus or minus] 68 [mu]M. It is concluded that pyruvate (and presumably other keto acids) increases the activity of AOX but does not increase its affinity for its substrate. In agreement with this is the finding that removal of pyruvate (using lactate dehydrogenase and NADH) leads to an 80 to 90% decrease in the reaction rate, suggesting that pyruvate is important in the mechanism of reaction of AOX. The removal of pyruvate from the enzyme required turnover, suggesting that pyruvate is bound to the enzyme and is released during turnover.  相似文献   

11.
This report describes the isolation procedure and properties of tightly coupled flight muscle mitochondria of the bumblebee Bombus terrestris (L.). The highest respiratory control index was observed upon oxidation of pyruvate, whereas the highest respiration rates were registered upon oxidation of a combination of the following substrates: pyruvate + malate, pyruvate + proline, or pyruvate + glutamate. The respiration rates upon oxidation of malate, glutamate, glutamate + malate, or succinate were very low. At variance with flight muscle mitochondria of a number of other insects reported earlier, B. terrestris mitochondria did not show high rates of respiration supported by oxidation of proline. The maximal respiration rates were observed upon oxidation of α-glycerophosphate. Bumblebee mitochondria are capable of maintaining high membrane potential in the absence of added respiratory substrates, which was completely dissipated by the addition of rotenone, suggesting high amount of intramitochondrial NAD-linked oxidative substrates. Pyruvate and α-glycerophosphate appear to be the optimal oxidative substrates for maintaining the high rates of oxidative metabolism of the bumblebee mitochondria.  相似文献   

12.
The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, alpha-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.  相似文献   

13.
Sacred lotus (Nelumbo nucifera) regulates temperature in its floral chamber to 32°C to 35°C across ambient temperatures of 8°C to 40°C with heating achieved through high alternative pathway fluxes. In most alternative oxidase (AOX) isoforms, two cysteine residues, Cys1 and Cys2, are highly conserved and play a role in posttranslational regulation of AOX. Further control occurs via interaction of reduced Cys1 with α-keto acids, such as pyruvate. Here, we report on the in vitro regulation of AOX isolated from thermogenic receptacle tissues of sacred lotus. AOX protein was mostly present in the reduced form, and only a small fraction could be oxidized with diamide. Cyanide-resistant respiration in isolated mitochondria was stimulated 4-fold by succinate but not pyruvate or glyoxylate. Insensitivity of the alternative pathway of respiration to pyruvate and the inability of AOX protein to be oxidized by diamide suggested that AOX in these tissues may lack Cys1. Subsequently, we isolated two novel cDNAs for AOX from thermogenic tissues of sacred lotus, designated as NnAOX1a and NnAOX1b. Deduced amino acid sequences of both confirmed that Cys1 had been replaced by serine; however, Cys2 was present. This contrasts with AOXs from thermogenic Aroids, which contain both Cys1 and Cys2. An additional cysteine was present at position 193 in NnAOX1b. The significance of the sequence data for regulation of the AOX protein in thermogenic sacred lotus is discussed and compared with AOXs from other thermogenic and nonthermogenic species.

Thermogenesis in Sacred Lotus

Sacred lotus (Nelumbo nucifera) is a thermogenic plant that regulates the temperature of its floral chamber between 32°C and 35°C for up to 4 d (Seymour and Schultze-Motel, 1996). Heating of plant tissues has been described as an adaptation to attract insect pollinators either by volatilization of scent compounds (Meeuse, 1975) or by providing a heat reward (Seymour et al., 1983), protect floral parts from low temperatures (Knutson, 1974), or provide the optimum temperature for floral development (Ervik and Barfod, 1999; Seymour et al., 2009). In sacred lotus, heat is produced by high rates of alternative pathway respiration (Watling et al., 2006; Grant et al., 2008); however, the mechanisms of heat regulation, which likely occur at a cellular level, remain unclear.

Alternative Oxidase

Alternative pathway respiration is catalyzed by the alternative oxidase protein (AOX), which acts as a terminal oxidase in the electron transport chain but, unlike the energy conserving cytochrome pathway (COX), complexes III and IV are bypassed and energy is released as heat. Traditionally, AOX activity was measured using oxygen consumption of tissue, cells, or isolated mitochondria in the presence or absence of AOX and COX inhibitors. However, this method does not accurately measure activity in vivo but does indicate the capacity of the alternative pathway (Ribas-Carbo et al., 1995; Day et al., 1996). The only method to date to accurately determine AOX activity, that is, flux of electrons through the AOX pathway in vivo, is to use oxygen isotope discrimination techniques (for review, see Robinson et al., 1995). Determining AOX activity in vivo is important because heat production in plants could be due to activity of either the AOX and/or plant uncoupling proteins. Using oxygen fractionation techniques, we have shown that flux through the AOX pathway is responsible for heating in sacred lotus (Watling et al., 2006; Grant et al., 2008). Furthermore, we were unable to detect any uncoupling protein in these tissues (Grant et al., 2008). AOX protein content within the sacred lotus receptacle increases markedly prior to thermogenesis, but it remains constant during heating (Grant et al., 2008), suggesting that regulation of heating occurs through posttranslational modification of the protein.

Posttranslational Regulation of AOX Protein

The plant AOX is a cyanide-insensitive dimeric protein located in the inner mitochondrial membrane (Day and Wiskich, 1995). The dimer subunits (monomers) can be linked via a noncovalent association (reduced protein) or covalently through the formation of a disulfide bridge (oxidized protein; Umbach and Siedow, 1993). The reduced protein when run on SDS-PAGE has a molecular mass of approximately 30 to 35 kD and the oxidized protein 60 to 71 kD; this holds true for AOX from a number of species, including soybean (Glycine max) roots and cotyledons (Umbach and Siedow, 1993), tobacco (Nicotiana tabacum) leaf (Day and Wiskich, 1995), and the thermogenic spadix of Arum maculatum (Hoefnagel and Wiskich, 1998).Regulation of AOX has been well studied in nonthermogenic plant species, and two mechanisms have been identified. Most AOX isoforms have two highly conserved Cys residues, Cys1 and Cys2 (defined in Berthold et al., 2000 and Holtzapffel et al., 2003), located near the N-terminal hydrophilic domain of the protein. In these isoforms, Cys1 can either be reduced on both subunits of the AOX dimer, or the Cys1 sulfhydryl groups can be oxidized to form a disulfide bridge (Rhoads et al., 1998). Reduction/oxidation modulation of AOX in vitro can be achieved using the sulfhydryl reductant dithiothreitol (DTT) to reduce the protein or diamide to oxidize the Cys residues. The reduced dimer can be further activated via the interaction of Cys1 with α-keto acids, principally pyruvate (Rhoads et al., 1998; see McDonald [2008] for a model of posttranslational regulation of AOX). In addition, Cys2 may also be involved in regulating AOX activity through interaction with the α-keto acid glyoxylate (which can also stimulate activity at Cys1; Umbach et al., 2002).Recently, however, AOX proteins with different regulatory properties have been reported. Naturally occurring AOX proteins without the two regulatory Cys residues have been identified and, along with site-directed mutagenesis studies, used to further elucidate the specific roles of Cys1 and Cys2. The LeAOX1b isoform from tomato (Lycopersicon esculentum), which has a Ser residue at the position of Cys1 and thus does not form disulfide linked dimers, is also activated by succinate rather than pyruvate when expressed in Saccharomyces cerevisiae (Holtzapffel et al., 2003). In Arabidopsis (Arabidopsis thaliana), uncharged or hydrophobic amino acid substitutions of either Cys result in an inactive enzyme, while positively charged substitutions produce an enzyme with higher than wild type basal activity but that is insensitive to pyruvate or succinate (Umbach et al., 2002). Single substitutions at Cys1 or Cys2 have revealed that glyoxylate can activate AOX via both Cys residues, but only one is needed for glyoxylate stimulation (Umbach et al., 2002, 2006). Double substitution mutants were not stimulated by either pyruvate or glyoxylate (Umbach et al., 2006).Previously, we determined that thermogenesis via the AOX pathway in the sacred lotus receptacle is precisely regulated through changes in AOX flux rather than changes to protein content (Grant et al., 2008). In this study, we investigated the nature of this regulation in mitochondria isolated from heating receptacles. Our aim was to elucidate the reduction/oxidation behavior of the AOX protein and the mechanisms of activation of cyanide-resistant respiration in sacred lotus receptacles to provide insights into the mechanism(s) of heat regulation in this species. We further investigated AOX regulation by determining the amino acid sequence of two novel AOX genes isolated from thermogenic receptacle tissue of sacred lotus.  相似文献   

14.
Pyruvate and malate transport and oxidation in corn mitochondria   总被引:14,自引:13,他引:1       下载免费PDF全文
Day DA  Hanson JB 《Plant physiology》1977,59(4):630-635
Pyruvate oxidation and swelling in pyruvate solutions by corn (Zea mays) mitochondria were inhibited by α-cyano-4-hydroxy-cinnamic acid, an inhibitor of pyruvate transport in animal mitochondria; however, there was no inhibition of pyruvate dehydrogenase activity, and malate and NADH oxidation were not affected. These results suggest the presence of a pyruvate-OH exchange transporter which supplies the mitochondrion with oxidizable substrate. Lactate appears to be transported also, but not dicarboxylate anions or inorganic phosphate. The rate of pyruvate transport was much slower than that of malate, however, and valinomycin was required to elicit appreciable swelling in potassium pyruvate.  相似文献   

15.
Many metabolic reactions are coupled to NADPH in the mitochondrial matrix, including those involved in thiol group reduction. One enzyme linked to such processes is mitochondrial NADP+-dependent isocitrate dehydrogenase (mtICDH; EC 1.1.1.42), although the precise role of this enzyme is not yet known. Previous work has implicated mtICDH as part of a biochemical mechanism to reductively activate the alternative oxidase (AOX). We have partially purified mtICDH from tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) cell suspension cultures and localized this to a 46-kDa protein on SDS-PAGE, which was verified by peptide sequencing. In the inflorescence of the aroid Sauromatum guttatum Schott (voodoo lily), mtICDH appears to be developmentally regulated, presenting maximal specific activity during the thermogenic period of anthesis when the capacity for AOX respiration is also at its peak. Transgenic tobacco plants were generated that overexpress mtICDH and lines were obtained that demonstrated up to a 7-fold increase in mtICDH activity. In isolated mitochondria, this resulted in a measurable increase in the reductive activation of AOX in comparison with wild type. When examined in planta in response to citrate feeding, a strong conversion of AOX from its oxidized to its reduced form was observed in the transgenic line. These data support the hypothesis that mtICDH may be a regulatory switch involved in tricarboxylic acid cycle flux and the reductive modulation of AOX.  相似文献   

16.
The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, α-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.  相似文献   

17.
Intact mitochondria have been successfully prepared from body tissues from the termites Nasutitermes walkeri and Coptotermes formosanus. This is the first report of the successful isolation of mitochondria from termites (Isoptera: Termitidae). Using an oxygen electrode, oxygen consumption by the mitochondria during the oxidation of various respiratory substrates was determined and their properties measured in terms of respiratory control index and ADP/O. ADP/O was as expected for substrates such as pyruvate, acetylcarnitine and acetyl-CoA and carnitine. Pyruvate and acetate were the major respiratory substrates in both species. The total activity of the pyruvate dehydrogenase complex (PDHc) in the mitochondria from N. walkeri and C. formosanus was determined to be 72.87+/-8.98 and 8.29+/-0.42 nmol/termite/h, respectively. Mitochondria isolated in the presence of inhibitors of PDHc interconversion were used to determine that about 60% of the PDHc was maintained in the active form in both N. walkeri and C. formosanus. The sufficient PDHc activity and high rate of pyruvate oxidation in mitochondria from N. walkeri suggest that pyruvate is rapidly metabolised, whereas the low mitochondrial PDHc activity of C. formosanus suggests that in this species more pyruvate is produced than can be oxidised in the termite tissues.  相似文献   

18.
The regulation of alternative oxidase activity by the effector pyruvate was investigated in soybean (Glycine max L.) mitochondria using developmental changes in roots and cotyledons to vary the respiratory capacity of the mitochondria. Rates of cyanide-insensitive oxygen uptake by soybean root mitochondria declined with seedling age. Immunologically detectable protein levels increased slightly with age, and mitochondria from younger, more active roots had less of the protein in the reduced form. Addition of pyruvate stimulated cyanide-insensitive respiration in root mitochondria, up to the same rate, regardless of seedling age. This stimulation was reversed rapidly upon removal of pyruvate, either by pelleting mitochondria (with succinate as substrate) or by adding lactate dehydrogenase with NADH as substrate. In mitochondria from cotyledons of the same seedlings, cyanide-insensitive NADH oxidation was less dependent on added pyruvate, partly due to intramitochondrial generation of pyruvate from endogenous substrates. Cyanide-insensitive oxygen uptake with succinate as substrate was greater than that with NADH, in both root and cotyledon mitochondria, but this difference became much less when an increase in external pH was used to inhibit intramitochondrial pyruvate production via malic enzyme. Malic enzyme activity in root mitochondria declined with seedling age. The results indicate that the activity of the alternative oxidase in soybean mitochondria is very dependent on the presence of pyruvate: differences in the generation of intramitochondrial pyruvate can explain differences in alternative oxidase activity between tissues and substrates, and some of the changes that occur during seedling development.  相似文献   

19.
Oxygen consumption by alternative oxidase (AOX), present in mitochondria of many angiosperms, is known to be cyanide-resistant in contrast to cytochrome oxidase. Its activity in potato tuber (Solanum tuberosum L.) was induced following chilling treatment at 4 °C. About half of the total O2 consumption of succinate oxidation in such mitochondria was found to be sensitive to SHAM, a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive oxygen consumption by nearly half, and addition at the end of the reaction released nearly half of the consumed oxygen by AOX, both typical of catalase action on H2O2. These findings with catalase suggest that the product of reduction of AOX is H2O2 and not H2O, as previously surmised. In potatoes subjected to chill stress (4 °C) for periods of 3, 5 and ?8 days the activity of AOX in mitochondria increased progressively with a corresponding increase in the AOX protein detected by immunoblot of the protein.  相似文献   

20.
The mitochondrial respiratory chain of Ustilago maydis contains two terminal oxidases, the cytochrome c oxidase (COX) and the alternative oxidase (AOX). To understand the biochemical events that control AOX activity, we studied the regulation and function of AOX under oxidative stress. The activity of this enzyme was increased by both pyruvate (K05 = 2.6 mM) and purine nucleotides (AMP, K05 = 600 μM) in mitochondria using succinate as respiratory substrate. When U. maydis cells were grown in the presence of antimycin A, the amount of AOX in mitochondria was markedly increased and its selectivity towards AMP and pyruvate changed, suggesting that post-translational events may play a role in the regulation of AOX activity under stress conditions. Addition of antimycin A to isolated mitochondria induced the inactivation of AOX, the formation of lipid peroxides and the loss of glutathione from mitochondria. The two last processes are probably related with the time dependent inactivation of AOX, in agreement with the inhibition of the enzyme by tert-butyl hydroperoxide. Our results suggest that the in vivo operation of AOX in U. maydis depends on the mitochondrial antioxidant machinery, including the glutathione linked systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号