首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have indicated that cytokines can enhance immunogenicity and promote tumor regression. However, the means for modulating cytokine production are not yet fully investigated. In this study we report the effects of a herbal melanin, extracted from Nigella sativa L., on the production of three cytokines [tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF)], by human monocytes, total peripheral blood mononuclear cells (PBMC) and THP-1 cell line. Cells were treated with variable concentrations of melanin and the expression of TNF-alpha, IL-6 and VEGF mRNA in cell lysates and secretion of proteins in the supernatants were detected by RT-PCR and ELISA. Melanin induced TNF-alpha, IL-6 and VEGF mRNA expression by the monocytes, PBMC and THP-1 cell line. On the protein level, melanin significantly induced TNF-alpha and IL-6 protein production and inhibited VEGF production by monocytes and PBMC. In the THP-1 cell line melanin induced production of all three cytokine proteins. These observations raise the prospects of using N. sativa L. melanin for treatment of diseases associated with imbalanced cytokine production and for enhancing cancer and other immunotherapies.  相似文献   

2.
Hessle CC  Andersson B  Wold AE 《Cytokine》2005,30(6):311-318
Pro-inflammatory cytokines secreted by tissue macrophages recruit polymorphonuclear leukocytes and evoke fever, cachexia and production of acute phase proteins. This study investigates whether Gram-positive and Gram-negative bacteria equally and efficiently trigger production of the pro-inflammatory cytokines IL-1 beta, IL-6, IL-8 and TNF-alpha in human monocytes. A range of aerobic and anaerobic Gram-positive and Gram-negative bacteria were killed by UV-light and added in different concentrations to human monocytes. Cytokines were measured in 24 h supernatants by ELISA. Gram-positive and Gram-negative bacteria were equally efficient inducers of IL-1 beta, but Gram-positive bacteria generated twice as much TNF-alpha as did Gram-negative bacteria (p<0.001 for 25 and 250 bacteria/cell). In contrast, Gram-negative bacteria induced at least twice as much IL-6 and IL-8 as did Gram-positive bacteria (p<0.001 for 2.5, 25 and 250 bacteria/cell). While the cytokine responses to LPS were similar to those induced by the corresponding amount of Gram-negative bacteria, the strong IL-1 beta and TNF-alpha responses to Gram-positive bacteria could not be induced by soluble peptidoglycan or lipotheicoic acid. The particular nature of the bacteria, thus seem to modify the response to Gram-positive bacterial components. The different cytokine profiles evoked by Gram-positive and Gram-negative bacteria might optimize clearance of bacteria that differ in cell wall structure.  相似文献   

3.
The mechanisms that control complement protein synthesis are incompletely understood. Recent evidence suggests that cytokines are involved in the regulation of hepatic synthesis of circulating complement components. Therefore, we compared the effects of human recombinant IL-1alpha, IL-1beta, IL-6, IFN-gamma, and TNF-alpha individually or in combination, on HepG2 secretion of complement component C3, the major opsonic protein of the complement system. HepG2 cells were incubated with each cytokine alone and with various combinations of the cytokines. At 24, 48, 72, and 96 h of incubation, the C3 and albumin secreted by the HepG2 cells were quantified by a sandwich ELISA. IL-1alpha and IFN-gamma significantly enhanced C3 secretion by the cells (P<0.02 vs. control cells). IL-1beta when combined with either IL-6 or IFN-gamma also increased C3 secretion (P<0.03 vs. control cells). The stimulatory effect on HepG2 cells by the IL-1beta/IL-6 combination was synergistic. With the exception of IL-1alpha, which increased albumin secretion, HepG2 secretion of albumin was not affected by incubation with individual cytokines or the cytokine combinations. Therefore, IL-1alpha, IFN-gamma, and the combination of IL-1beta with IL-6 or IFN-gamma specifically enhanced C3 secretion by HepG2 cells. The greatest magnitude of C3 secretion was induced by the combination of IL-1beta and IL-6.  相似文献   

4.
5.
Many cytokines (including IL-1, IL-2, IL-4, IL-6, and TNF-alpha) have been shown to induce thymocyte proliferation in the presence of PHA. In this report, we demonstrate that certain cytokine combinations induce thymocyte proliferation in the absence of artificial comitogens. IL-1 alpha, IL-6, and TNF-alpha enhanced the proliferation of whole unseparated thymocytes in the presence of IL-2, whereas none of them induced thymocyte proliferation alone. In contrast, of these three enhancing cytokines, only IL-6 enhanced IL-4-induced proliferation. We also separated thymocytes into four groups based on their expression of CD4 and CD8, and investigated their responses to various cytokines. The results indicate that each cytokine combination affects different thymocyte subsets; thus, IL-1 alpha enhanced the proliferation of CD4-CD8- double negative (DN) thymocytes more efficiently than IL-6 in the presence of IL-2, whereas IL-6 enhanced the responses of CD4+CD8- and CD4-CD8+ single positive (SP) thymocytes to IL-2 or IL-4 better than IL-1 alpha. TNF-alpha enhanced the proliferation of both DN and both SP subsets in the presence of IL-2 and/or IL-7. None of these combinations induced the proliferation of CD4+CD8+ double positive thymocytes. Finally, DN were separated into CD3+ and CD3- populations and their responsiveness was investigated, because recent reports strongly suggest that CD3+ DN thymocytes are a mature subset of different lineage rather than precursors of SP thymocytes. CD3+ DN proliferated in response to IL-7, TNF-alpha + IL-2, and IL-1 + IL-2. CD3- DN did not respond to IL-7 or to IL-1 + IL-2, but did respond to TNF-alpha + IL-2. Finally, we detected TNF-alpha production by a cloned line of thymic macrophages, as well as by DN adult thymocytes. These results suggest that cytokines alone are capable of potent growth stimuli for thymocytes, and indicate that different combinations of these molecules act selectively on thymocytes at different developmental stages.  相似文献   

6.
Both IL-1 alpha and IL-1 beta and TNF-alpha induced a time- and dose-dependent release of authentic PGE2 from cultured human glomerular mesangial cells (HMC). This release became significant only after a 4- to 6-h lag phase, and was abolished by inhibition of protein synthesis, and was not related to cell proliferation. Combinations of IL-1 and TNF-alpha when added simultaneously to HMC resulted in a dose-dependent synergistic increase in PGE2 production. These stimulatory effects were specifically inhibited by anticytokine antibodies and the synergistic effect required the simultaneous presence of both IL-1 and TNF-alpha. Arachidonic acid (AA) release experiments and measurement of cyclooxygenase activity, revealed that while both were increased by IL-1 beta and TNF-alpha alone (IL-1 beta greater than TNF-alpha), combinations of IL-1 beta and TNF-alpha resulted in only additive increases in AA release and cyclooxygenase activity. Taken together, these data suggest that stimulation of PGE2 in HMC, by combinations of these cytokines, is not rate limited by AA release or cyclooxygenase activation, but may be related to the induction of the distal enzymes controlling specific PG synthesis.  相似文献   

7.
To study the causes of synovitis in rheumatoid arthritis (RA), we have analyzed the effect of several cytokines known to be secreted in RA joints, on synovial cell proliferation and prostaglandin E2 (PGE2) production. Recombinant interleukin-1-beta (IL-1-beta) and tumor necrosis factor-alpha (TNF-alpha) stimulated moderately the DNA synthesis and markedly the production of PGE2. Interferon-gamma (IFN-gamma) was often mitogenic but never induced PGE2 secretion. The association of IL-1-beta and TNF-alpha showed an additive effect on both parameters, whereas addition of IFN-gamma to either monokine reduced the proliferation and increased PGE2 release. Incubation with a crude T cell supernatant or a mixture of cytokines including IL-1-beta, TNF-alpha and IFN-gamma enhanced synovial cell growth and PGE2 production as compared to the effect elicited by each single cytokine. In contrast, interleukin-2 (IL-2) down regulated the synovial cell activation induced by the combined action of the three other cytokines. Taken together, our findings indicate that synovial cell proliferation is weakly stimulated, reaching a two-fold increase over background levels, whatever cytokines are used. Furthermore, proliferation can vary independently of PGE2 production. Nevertheless, the monokines IL-1-beta and TNF-alpha both exert agonistic effects on synovial cell activation, thus contributing to cartilage damage in RA, whereas IFN-gamma, IL-6 or IL-2 may rather play a regulatory role.  相似文献   

8.
Luo Y  Chen X  O'Donnell MA 《Cytokine》2003,21(1):17-26
Induction of a T-helper-type 1 (Th1) immune response is indispensable for successful treatment of superficial bladder cancer with BCG. In this study possible involvement of various cytokines in BCG action as well as their potential roles in enhancing and mimicking BCG effect were explored. In immunocompetent cell cultures, IFN-gamma, a major Th1 cytokine, appears to be a late responsive cytokine to BCG stimulation. Its induction requires involvement of various endogenously produced Th1 and Th2 cytokines. Functional abolishment of any one of these cytokines (IL-2, IL-6, IL-12, IL-18, GMCSF, TNF-alpha, or IFN-alpha, except IL-10) by neutralizing antibodies leads to reduced IFN-gamma production (19-82% inhibition in mouse and 44-77% inhibition in human systems, respectively). In mice cytokines IL-2, IL-12, IL-18, and GMCSF are observed to synergize with BCG for IFN-gamma production, whereas in human cytokines IL-2, IL-12, TNF-alpha, and IFN-alpha exhibit similar synergistic effects. Rational combinations of these Th1-stimulating cytokines (IL-12 plus IL-18 in mice and IL-2 plus IL-12 in humans, respectively) dramatically up-regulate IFN-gamma production that is incomparably superior to BCG for induction of this cytokine. These results suggest that combined Th1-stimulating cytokines and combinations of BCG plus selected Th1-stimulating cytokines are rational candidates for further study in the treatment of bladder cancer patients.  相似文献   

9.
We have previously shown that induction of synthesis of the two major human acute phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP), can be accomplished in the human hepatoma cell line Hep 3B, in the presence of dexamethasone, either by conditioned medium from LPS-stimulated monocytes or by the combination of IL-6 and IL-1. Neither of these cytokines alone caused significant induction of either SAA or CRP. In the present study we extended our earlier observations by evaluating the role of dexamethasone, the effect of different concentrations of IL-6 and IL-1 alpha in combination, and the possible role of TNF-alpha in regulating synthesis of SAA and CRP. Dexamethasone alone had no effect on induction of SAA or CRP. Incubation of Hep 3B cells with conditioned medium from LPS-stimulated monocytes, in the absence of dexamethasone, led to modest induction of SAA or CRP, but addition of dexamethasone potentiated this response in a dose-dependent manner. Similar results were obtained for the effect of dexamethasone on the induction of SAA by IL-6 plus IL-1 alpha. Checkerboard titration of IL-6 and IL-1 alpha revealed that increases in concentration of either cytokine led to dose-related increases in synthesis of both SAA and CRP as long as a minimal amount of the other cytokine was present. TNF-alpha alone had no significant effect on synthesis of either SAA or CRP, but the combination of IL-6 plus TNF-alpha led to substantial induction of SAA. This combination was less effective than the combination of IL-6 plus IL-1 alpha. No detectable effect of IL-6 plus TNF-alpha was observed on CRP synthesis. Both combinations of cytokines, IL-6 plus IL-1 alpha, and IL-6 plus TNF-alpha, caused increased SAA mRNA accumulation that roughly paralleled increase in synthesis. These data indicate that IL-6, IL-1 alpha, TNF-alpha, and dexamethasone in various combinations are all capable of influencing synthesis of SAA in Hep 3B cells, whereas only IL-6, IL-1 alpha, and dexamethasone can influence CRP synthesis.  相似文献   

10.
S P Ballou  G Lozanski 《Cytokine》1992,4(5):361-368
The human acute phase protein, C-reactive protein (CRP), is capable of specifically binding to and modulating the function of mononuclear phagocytes. To investigate whether CRP can also affect the capacity of these cells to produce inflammatory cytokines, enzyme immunoassays and Western blot techniques were used to quantitate interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) produced by freshly-isolated normal human monocytes. CRP induced the rapid release of each cytokine, with significantly elevated levels in culture supernatants at 4 hours and maximal levels of TNF-alpha at 8 hours, and of IL-1 beta and IL-6 at 16 hours of culture. The effects of CRP were dose-dependent; greater than 10-fold increases of each cytokine were observed following culture with greater than or equal to 50 micrograms/ml CRP, concentrations which are often found in the presence of moderate to severe inflammation or tissue injury. The induction of cytokine release by CRP was unaffected by inclusion of 25 micrograms/ml polymyxin-B in culture media, but was completely abrogated by prior boiling of the CRP, a procedure which had no effect on induction of monocyte cytokine release by lipopolysaccharide. The dose-dependent induction of inflammatory cytokines by CRP provides further support for the hypothesis that interaction with mononuclear phagocytes constitutes an important biological role for this acute phase protein.  相似文献   

11.
12.
13.
14.
The cannabinoid system and cytokine network   总被引:5,自引:0,他引:5  
Many advances have been made in the last few years concerning our understanding of the receptors and ligands composing the cannabinoid system. Likewise, the science surrounding cytokine biology has advanced enabling us to measure these proteins more precisely as well as understand and interpret the meaning of changes in their levels. Scientists wishing to study the health consequences of smoking marijuana as well as understand the possible role of endogenous cannabimimetic ligands in immune regulation have continued to study the influence of these substances on the regulation and development of the cytokine network. Research has shown that two major cannabinoid receptor subtypes exist and that subtype 1 (CB1) is expressed primarily in the brain whereas subtype 2 (CB2) is expressed primarily in the periphery. A variety of ligands for these receptors based on the cannabinoid structure have been synthesized and studied as well as low affinity compounds, noncannabinoid ligands, and endogenous ligands derived from fatty acid eicosanoids. Highly selective receptor antagonists have also been introduced and studied. Synthetic, low affinity ligands such as (+)-HU-211 and DMH-11C have been shown to cause anti-inflammatory effects possibly through inhibiting the production and action of TNF-alpha and other acute phase cytokines. In addition, suppression of TNF and other cytokines such as GM-CSF, IL-6, IFNgamma, and IL-12 has also been seen following exposure to high affinity and psychoactive ligands such as marijuana and THC. However, some of these ligands have also been shown to increase rather than decrease interleukins such as IL-1, IL-4, IL-10, and IL-6, cytokines such as TNF-alpha, and chemokines such as IL-8, MIP-1, and RANTES. The endogenous ligand, anandamide, has been shown in culture to either suppress the proliferation response to prolactin or enhance the response to cytokines such as IL-3 and IL-6. This eicosanoid has also been shown to increase the production of interleukins and other cytokines. Cannabinoid receptors have been shown to be involved in some but not all of these effects. It is clear that psychoactive and nonpsychoactive compounds have demonstrated effects in vivo and in vitro on the production and function of a variety of cytokines. Depending upon the model system, these effects are often conflicting, and the involvement of cannabinoid receptors is unclear. However, enough evidence exists to suggest that the cannabinoid system significantly impacts the functioning of the cytokine network, and this association may provide clues to the mechanisms of certain immune diseases and form the basis for new immunotherapies.  相似文献   

15.
The recognition of a pathogen or a vaccine antigen formulation by cells in the innate immune system leads to production of proinflammatory cytokines, which will determine the ensuing acquired immune response quantitatively and qualitatively. Tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 and IL-6 are the first set of cytokines produced upon such an encounter, which have roles both in protective immunity and immunopathogenesis evident with respiratory syncytial virus (RSV). RSV antigens in different physical adjuvant-vaccine formulations were analysed for their capacity to provoke cultured murine peritoneal cells to produce these three proinflammatory cytokines. RSV immunostimulating complex (ISCOM), i.e. both antigen and adjuvant are incorporated in the same particle, induced high levels of IL-1alpha being of the same magnitude or higher than those of live RSV and lipopolysaccharide (LPS). Live virus and LPS induced higher levels of IL-6 and TNF-alpha than ISCOM and so did non-adjuvanted UV-inactivated RSV but only at high doses. ISCOM-Matrix, i.e. ISCOM without antigens, admixed as a separate entity to inactivated RSV, downregulated or blocked the cytokine response to the inactivated RSV in contrast to ISCOM. Kinetic studies showed that ISCOM induced cytokine production first detected at hours 1, 2, 4 for TNF-alpha, IL-6 and IL-1alpha respectively, which was earlier than for the other antigen formulations containing corresponding doses of antigen and/or Quillaja adjuvant. Peak values for production of TNF-alpha and IL-6 were at 8 h and for IL-1alpha at 72 h following stimulation with ISCOM. The delayed appearance of IL-1alpha may reflect the cell-bound nature of this cytokine.  相似文献   

16.
The interaction between interleukin-10 (IL-10) and interleukin-6 (IL-6) was investigated in the inflammatory response to Rhodococcus aurantiacus (R. aurantiacus) infection, in which both cytokines act as anti-inflammatory cytokines. Compared with wild-type (WT) counterparts, IL-6 gene-deficient (IL-6(-)/(-)) mice mounted a more robust production of IL-10 and tumor necrosis factor-alpha (TNF-alpha) during the initial phase of infection. Administration of anti-IL-10 antibody resulted in all the mice dying within 3 days post-infection as well as a further elevated TNF-alpha release. In vitro challenge of the macrophages from IL-6(-)/(-) and WT mice with heat-killed R. aurantiacus also showed similar results. Addition of exogenous IL-6 depressed IL-10 and TNF-alpha production by either IL-6(-)/(-) mice or IL-6(-)/(-) mouse macrophages. Likewise, WT mouse macrophages pretreated with anti-IL-10 or anti-IL-6 antibody exhibited increased production of TNF-alpha and IL-6 or IL-10 respectively. Moreover, neutralization of both IL-10 and IL-6 induced a further increase in TNF-alpha production by WT mouse cells. Overall, we conclude that IL-10 is a key element in protecting mice against mortality, and that IL-10 and IL-6 production are negatively regulated by each other although they are additive in suppressing TNF-alpha release in R. aurantiacus-infected mouse model.  相似文献   

17.
Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF) are considered as important mediators for the modulation of liver synthesis of acute phase proteins. However, studies of the direct effect of individual or a combination of these cytokines on the synthesis of acute phase proteins in human hepatocytes are still very limited. In this study, we have examined the synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes exposed to recombinant(r)IL-1 alpha (100 U/ml), rIL-6 (2000 U/ml), rTNF alpha (30 U/ml) and to various combinations of these cytokines in the presence of 1 microM dexamethasone. Monoclonal antibodies to rTNF alpha and monospecific anti-rIL-6 sheep antiserum were also used to investigate the possible endogenous production of TNF or IL-6. The findings indicate: (1) IL-1 and IL-6 are stimulatory cytokines for the liver synthesis of CRP and SAA. Anti IL-6 abolishes the stimulatory effect of IL-1. These findings support the previous observation and indicate that IL-1 exerts its action on the enhanced synthesis of CRP and SAA at least in part via IL-6 production in the liver cell. (2) TNF is an inhibitory cytokine for the liver synthesis of CRP. It inhibits also the stimulatory effect of IL-1 and IL-6 on the synthesis of CRP and SAA. (3) Since anti-TNF enhances the stimulatory effect of IL-6 on the synthesis of CRP and SAA, it seems likely that TNF is also produced by the human hepatocytes. However, further studies for more direct evidence of the liver cell production of TNF, such as the detection of TNF messenger RNA are required.  相似文献   

18.
Actinobacillus actinomycetemcomitans is implicated in the pathogenesis of localized aggressive periodontitis, and has the capacity to express a cytolethal distending toxin (Cdt). Gingival fibroblasts (GF) are resident cells of the periodontium, which can express several osteolytic cytokines. The aims of this study were a) to investigate the role of Cdt in A. actinomycetemcomitans-induced expression of osteolytic cytokines and their cognate receptors in GF and b) to determine if the previously demonstrated induction of receptor activator of NFkappaB ligand (RANKL) by A. actinomycetemcomitans is mediated by these pro-inflammatory cytokines or by prostaglandin E(2) (PGE(2)). A. actinomycetemcomitans clearly induced interleukin (IL)-6, IL-1beta, and to a minimal extent, tumor necrosis factor (TNF)-alpha mRNA expression. At the protein level, IL-6 but not IL-1beta or TNF-alpha expression was stimulated. The mRNA expression of the different receptor subtypes recognizing IL-6, IL-1beta and TNF-alpha was not affected. A cdt-knockout strain of A. actinomycetemcomitans had similar effects on cytokine and cytokine receptor mRNA expression, compared to its parental wild-type strain. Purified Cdt stimulated IL-6, but not IL-1beta or TNF-alpha protein biosynthesis. Antibodies neutralizing IL-6, IL-1 or TNF-alpha, and the PGE(2) synthesis inhibitor indomethacin, did not affect A. actinomycetemcomitans-induced RANKL expression. In conclusion, a) A. actinomycetemcomitans induces IL-6 production in GF by a mechanism largely independent of its Cdt and b) A. actinomycetemcomitans-induced RANKL expression in GF occurs independently of IL-1, IL-6, TNF-alpha, or PGE(2).  相似文献   

19.
Cytokines are proteins that mediate communication between cells of the immune system as well as certain other non-immune host cells. These proteins are produced by many cell types and they mediate immune and inflammatory responses. However, the direct site analysis of these critical proteins is hampered by the lack of site-specific tools available for such direct measurements. In this study, both in vitro and in vivo microdialysis sampling of different cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], interleukin-6 [IL-6], IL-12p70, and macrophage chemoattractant protein-1 [MCP-1]) was performed. A mouse model of bacterial lipopolysaccharide (LPS) administration and response pattern was used for in vivo studies. Three cytokines, TNF-alpha, IL-6, and MCP-1 were quantified in the serum from mice given LPS. In vivo studies demonstrated the ability to monitor increasing levels of these cytokines (TNF-alpha, IL-6, and MCP-1) via microdialysis probes placed in the peritoneal cavity of mice given LPS. All three cytokines were quantified simultaneously in 15 muL of dialysate using a multiplexed bead-based immunoassay for flow cytometry. The detected dialysate cytokine concentrations varied between 200 pg/mL and 1500 pg/mL for TNF-alpha, between 600 pg/mL and 3000 pg/mL for MCP-1, and between 2700 pg/mL and more than 5000 pg/mL for IL-6. The detected serum cytokine concentrations ranged from 5700 pg/mL to 35,000 pg/mL for TNF-alpha, from 40,000 pg/mL to 65,000 pg/mL for MCP-1, and greater than than 100,000 pg/mL for IL-6. This work demonstrates that microdialysis sampling can be used in vivo to collect temporal profiles of cytokine production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号