首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.  相似文献   

2.
While climate change and associated increases in sea surface temperature and ocean acidification, are among the most important global stressors to coral reefs, overfishing and nutrient pollution are among the most significant local threats. Here we examined the independent and interactive effects of reduced grazing pressure and nutrient enrichment using settlement tiles on a coral-dominated reef via long-term manipulative experimentation. We found that unique assemblages developed in each treatment combination confirming that both nutrients and herbivores are important drivers of reef community structure. When herbivores were removed, fleshy algae dominated, while crustose coralline algae (CCA) and coral were more abundant when herbivores were present. The effects of fertilization varied depending on herbivore treatment; without herbivores fleshy algae increased in abundance and with herbivores, CCA increased. Coral recruits only persisted in treatments exposed to grazers. Herbivore removal resulted in rapid changes in community structure while there was a lag in response to fertilization. Lastly, re-exposure of communities to natural herbivore populations caused reversals in benthic community trajectories but the effects of fertilization remained for at least 2 months. These results suggest that increasing herbivore populations on degraded reefs may be an effective strategy for restoring ecosystem structure and function and in reversing coral–algal phase-shifts but that this strategy may be most effective in the absence of other confounding disturbances such as nutrient pollution.  相似文献   

3.
Sedimentation and overfishing are important local stressors on coral reefs that can independently result in declines in coral recruitment and shifts to algal-dominated states. However, the role of herbivory in driving recovery across environmental gradients is often unclear. Here we investigate early successional benthic communities and coral recruitment across a sediment gradient in Palau, Micronesia over a 12-month period. Total sedimentation rates measured by ‘TurfPods’ varied from 0.03 ± 0.1 SE mg cm−2 d−1 at offshore sites to 1.32 ± 0.2 mg cm−2 d−1 at inshore sites. To assess benthic succession, three-dimensional settlement tiles were deployed at sites with experimental cages used to exclude tile access to larger herbivorous fish. Benthic assemblages exhibited rapid transitions across the sediment gradient within three months of deployment. At low levels of sedimentation (less than 0.6 mg cm−2 d−1), herbivory resulted in communities dominated by coral recruitment inducers (short turf algae and crustose coralline algae), whereas exclusion of herbivores resulted in the overgrowth of coral inhibitors (encrusting and upright foliose macroalgae). An ‘inducer threshold’ was found under increasing levels of sedimentation (greater than 0.6 mg cm−2 d−1), with coral inducers having limited to no presence in communities, and herbivore access to tiles resulted in sediment-laden turf algal assemblages, while exclusion of herbivores resulted in invertebrates (sponges, ascidians) and terrestrial sediment accumulation. A ‘coral recruitment threshold’ was found at 0.8 mg cm−2 d−1, below which net coral recruitment was reduced by 50% in the absence of herbivores, while recruitment was minimal above the threshold. Our results highlight nonlinear trajectories of benthic succession across sediment gradients and identify strong interactions between sediment and herbivory that have cascading effects on coral recruitment. Local management strategies that aim to reduce sedimentation and turbidity and manage herbivore fisheries can have measurable effects on benthic community succession and coral recruitment, enhancing reef resilience and driving coral recovery.  相似文献   

4.
Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.  相似文献   

5.
Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities.  相似文献   

6.
This paper presents seasonal in situ monitoring data on benthic coverage and coralalgae interactions in high-latitude fringing reefs of the Northern Red Sea over a period of 19 months. More than 30% of all hermatypic corals were involved in interaction with benthic reef algae during winter compared to 17% during summer, but significant correlation between the occurrence of coralalgae interactions and monitored environmental factors such as temperature and inorganic nutrient availability was not detected. Between 5 and 10-m water depth, the macroalgae Caulerpa serrulata, Peyssonnelia capensis and filamentous turf algae represented almost 100% of the benthic algae involved in interaction with corals. Turf algae were most frequently (between 77 and 90% of all interactions) involved in interactions with hermatypic corals and caused most tissue damage to them. Maximum coral tissue loss of 0.75% day−1 was observed for Acropora-turf algae interaction during fall, while an equilibrium between both groups of organisms appeared during summer. Slow-growing massive corals were more resistant against negative algal influence than fast-growing branching corals. Branching corals of the genus Acropora partly exhibited a newly observed phenotypic plasticity mechanism, by development of a bulge towards the competing organism, when in interaction with algae. These findings may contribute to understand the dynamics of phase shifts in coral reefs by providing seasonally resolved in situ monitoring data on the abundance and the competitive dynamic of coralalgae interactions.  相似文献   

7.
Herbivorous fish occupy an important niche in coral reef ecosystems. Specifically, damselfish of the genus Stegastes have been shown to have a significant impact on coral community structure and algal assemblages. This study investigated the algal communities associated with Stegastes territories of the Indo-Pacific (Fiji, Solomon Islands, and Tonga), while concurrently examining the effects of nutrient enrichment and herbivore exclusion (alone and in unison) on these communities. Results evidenced differences in species composition, percent cover, and algal growth rate between Stegastes territories and non-Stegastes sites and between control sites and treatment sites. Stegastes territories consistently displayed a greater abundance of turf algae than non-Stegastes sites; the two main genera of turf algae observed at all sites were Polysiphonia and Ceramium. Although non-Stegastes sites in Fiji, the Solomon Islands, and Tonga showed a greater percent coverage of macroalgae, they contained fewer algal species compared to Stegastes territories. In Fiji, red macroalgae decreased in the herbivore exclusion treatments, while brown macroalgae increased significantly in the herbivore exclusion and nutrient treatments. The combined effect of the herbivore exclusion and nutrient treatment at this location yielded a significantly increased turf algae growth rate compared to control sites. Growth rates of turf algae in the Solomon Islands and Tonga increased significantly in caged treatments, suggesting that damselfish of the genus Stegastes can play an important role in maintaining cropped algal beds. In summation, the results demonstrated that Stegastes sustains distinct algal assemblages which may be disrupted by reduced grazing and/or eutrophication.  相似文献   

8.
Previous studies in fringing reefs of the Northern Red Sea demonstrated that the in-situ competition of corals and algae in natural assemblages is highly variable between seasons displaying fast overgrowth of corals by benthic reef algae in fall that follows close to equilibrium between both groups of organisms in summer. This may be caused by up to 5-fold higher inorganic nutrient and 6-fold higher organic nutrient concentrations in fall and winter, thereby potentially promoting algae and cyanobacteria growth with concomitant phase shift. A long term mesocosm experiment (duration: 90 days) was conducted in order to study the effect of dissolved inorganic (ammonium, phosphate, nitrate, and mix of all three) and organic (glucose) nutrient addition onto the competitive process in the dominant coral–algae assemblages of the Northern Red Sea involving branching corals of the genus Acropora and a typical consortium of benthic turf algae. Nutrients were added in 3-fold higher concentrations compared to the annual averages, and the parameters algal growth, extension of bleached area on corals, tissue colour change and chlorophyll a concentrations were monitored at regular intervals over experimental duration. This revealed that elevated ammonium concentrations and elevated organic nutrient concentrations stimulate algal growth, while coral tissue pigmentation and chlorophyll a content were significantly decreased. But only in the elevated organic nutrient treatment all effects on corals were significantly pronounced when assembled with benthic turf algae. Supplementary logger measurements revealed that O2 water concentrations were significantly lower in the elevated organic nutrient mesocosm compared to all other treatments, confirming side-effects on microbial activity. These findings indicate that organic nutrient input into coral reefs can affect physiology and metabolism of both corals and benthic turf algae. Reinforcing interaction between both groups of organisms along with involvement of microbes may facilitate phase shifts in coral reef ecosystems.  相似文献   

9.
Numerous studies have documented declines in the abundance of reef-building corals over the last several decades and in some but not all cases, phase shifts to dominance by macroalgae have occurred. These assessments, however, often ignore the remainder of the benthos and thus provide limited information on the present-day structure and function of coral reef communities. Here, using an unprecedentedly large dataset collected within the last 10 years across 56 islands spanning five archipelagos in the central Pacific, we examine how benthic reef communities differ in the presence and absence of human populations. Using islands as replicates, we examine whether benthic community structure is associated with human habitation within and among archipelagos and across latitude. While there was no evidence for coral to macroalgal phase shifts across our dataset we did find that the majority of reefs on inhabited islands were dominated by fleshy non-reef-building organisms (turf algae, fleshy macroalgae and non-calcifying invertebrates). By contrast, benthic communities from uninhabited islands were more variable but in general supported more calcifiers and active reef builders (stony corals and crustose coralline algae). Our results suggest that cumulative human impacts across the central Pacific may be causing a reduction in the abundance of reef builders resulting in island scale phase shifts to dominance by fleshy organisms.  相似文献   

10.
Synopsis Herbivorous fishes and invertebrates are conspicious elements of coral reef communities where they predominate both in numbers and biomass. Herbivores and the coral reef algae on which they feed represent a co-evolved system of defense and counter-defense. Algal species have developed toxic, structural, spatial and temporal defense or escape mechanisms, while the herbivores employ strategies that involve anatomical, physiological and behavioral adaptations. Current research demonstrates that many reef fishes are highly selective in the algae they consume. Food selection in these fishes may be correlated with their morphological and digestive capabilities to rupture algal cell walls. Sea urchins select more in accordance with relative abundance, although certain algal species are clearly avoided.The determinants of community structure on coral reefs have yet to be established but evidence indicates a strong influence by herbivores. Reef herbivores may reduce the abundance of certain competitively superior algae, thus allowing corals and cementing coralline algae to survive. We discuss how the foraging activities of tropical marine herbivores affect the distribution and abundance of algae and how these activities contribute to the development of coral reef structure and the fish assemblages which are intimately associated with reef structure.This paper forms a part of the proceedings of a mini-symposium convened at Cornell University, Ithaca, N.Y., 18–19 May 1976, entitled Patterns of Community Structure in Fishes (G. S. Helfman, ed.).  相似文献   

11.
The study of coral repopulation in marginal communities may provide a useful analog for understanding the dynamics of coral reefs subjected to deleterious environmental changes. Repopulation of scleractinian reef corals may strongly impact the community structure on tropical reefs; however, the extent of this process on coral communities influenced by upwelling is unknown, especially in the Caribbean. In this study, the potential for natural repopulation of coral communities subjected to wind-driven upwelling was evaluated at three sites on the island of Cubagua, Venezuela. Coral spawning behavior was recorded and both larval settlement and juvenile abundance were estimated. Upwelling did not appear to affect coral spawning behavior, since at this locality spawning occurred at dates and times similar to those reported for well-developed reefs in the Caribbean. Also, juveniles produced by brooding corals were six times more abundant than those of broadcasting species, similar to patterns on other Caribbean reefs that are not under the influence of upwelling. By contrast, mean larval settlement (4 settlers m−2) and juvenile abundance (0.1 juveniles m−2) in Cubagua were both lower than those elsewhere in the Caribbean and on Pacific reefs. Thus, the potential for repopulation of these marginal communities seems lower than for well-developed coral reefs in other regions. These results suggest that more fully developed coral reefs also may have reduced repopulation potential, as they become influenced by suboptimal environmental conditions. Handling editor: I. Nagelkerken  相似文献   

12.

Background

Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances.

Methodology and Principal Findings

In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum) and the ocean surgeonfish (Acanthurus bahianus); in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus). On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae.

Significance

This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental stage of the community. The species-specific effects of herbivorous fishes suggest that a species-rich herbivore fauna can be critical in providing the resilience that reefs need for recovery from common disturbances such as coral bleaching and storm damage.  相似文献   

13.
Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed to differing environmental settings can provide essential information in this context. One prevalent phenomenon regularly introducing alterations in water chemistry into coral reefs are internal waves. This study therefore investigates the effect of large amplitude internal waves (LAIW) on primary productivity in coral reefs at the Similan Islands (Andaman Sea, Thailand). The LAIW-exposed west sides of the islands are subjected to sudden drops in water temperature accompanied by enhanced inorganic nutrient concentrations compared to the sheltered east. At the central island, Ko Miang, east and west reefs are only few hundred meters apart, but feature pronounced differences. On the west lower live coral cover (-38 %) coincides with higher turf algae cover (+64 %) and growth (+54 %) compared to the east side. Turf algae and the reef sand-associated microphytobenthos displayed similar chlorophyll a contents on both island sides, but under LAIW exposure, turf algae exhibited higher net photosynthesis (+23 %), whereas the microphytobenthos displayed reduced net and gross photosynthesis (-19 % and -26 %, respectively) accompanied by lower respiration (-42 %). In contrast, the predominant coral Porites lutea showed higher chlorophyll a tissues contents (+42 %) on the LAIW-exposed west in response to lower light availability and higher inorganic nutrient concentrations, but net photosynthesis was comparable for both sides. Turf algae were the major primary producers on the west side, whereas microphytobenthos dominated on the east. The overall primary production rate (comprising all main benthic primary producers) was similar on both island sides, which indicates high primary production variability under different environmental conditions.  相似文献   

14.
Empirical relationships among resilience indicators on Micronesian reefs   总被引:1,自引:0,他引:1  
A process-orientated understanding of ecosystems usually starts with an exploratory analysis of empirical relationships among potential drivers and state variables. While relationships among herbivory, algal cover, and coral recruitment, have been explored in the Caribbean, the nature of such relationships in the Pacific appears to be variable or unclear. Here, we examine potential drivers structuring the benthos and herbivorous fish assemblages of outer-shelf reefs in Micronesia (Palau, Guam and Pohnpei). Surveys were stratified by wave exposure and protection from fishing. High biomass of most herbivores was favoured by high wave exposure. High abundance of large-bodied scarids was associated with low turf abundance, high coral cover, and marine reserves. The remaining herbivores were more abundant in reefs with low coral cover, possibly because space and hence food limitation occur in high-coral-cover reefs. Rugosity had no detectable effect on herbivorous fish abundance once differences in exposure and coral cover were accounted for. At identical depths, high wave exposure was associated with greater volumes (cover × canopy height) of macroalgae and algal turfs, which most likely resulted from high primary productivity driven by flow. In exposed areas, macroalgal cover declined as the acanthurid biomass increased. The volume of algal turfs was negatively associated with coral cover and herbivore biomass. In turn, high coral cover and herbivore biomass are likely to intensify grazing. The density of juvenile corals was variable where macroalgal cover was low but was confined to lower densities where macroalgal cover was high. High coral cover and density of juvenile corals were favoured in sheltered habitats. While a weak positive relationship was found between scarid biomass and juvenile coral density, we hypothesise that high scarid densities may hinder juvenile density through increased corallivory. New hypotheses emerged that will help clarify the role of acanthurids, wave exposure, and corallivory in driving the recovery of Pacific coral communities.  相似文献   

15.
Marine heatwaves can lead to rapid changes in entire communities, including in the case of shallow coral reefs the potential overgrowth of algae. Here we tested experimentally the differential thermal tolerance between algae and coral species from the Red Sea through the measurement of thermal performance curves and the assessment of thermal limits. Differences across functional groups (algae vs. corals) were apparent for two key thermal performance metrics. First, two reef‐associated algae species (Halimeda tuna and Turbinaria ornata) had higher lethal thermal limits than two coral species (Pocillopora verrucosa and Stylophora pistillata) conferring those species of algae with a clear advantage during heatwaves by surpassing the thermal threshold of coral survival. Second, the coral species had generally greater deactivation energies for net and gross primary production rates compared to the algae species, indicating greater thermal sensitivity in corals once the optimum temperature is exceeded. Our field surveys in the Red Sea reefs before and after the marine heatwave of 2015 show a change in benthic cover mainly in the southern reefs, where there was a decrease in coral cover and a concomitant increase in algae abundance, mainly turf algae. Our laboratory and field observations indicate that a proliferation of algae might be expected on Red Sea coral reefs with future ocean warming.  相似文献   

16.
Overfishing and land-derived eutrophication are major local threats to coral reefs and may affect benthic communities, moving them from coral dominated reefs to algal dominated ones. The Central Red Sea is a highly under-investigated area, where healthy coral reefs are contending against intense coastal development. This in-situ study investigated both the independent and combined effects of manipulated inorganic nutrient enrichment (simulation of eutrophication) and herbivore exclosure (simulation of overfishing) on benthic algae development. Light-exposed and shaded terracotta tiles were positioned at an offshore patch reef close to Thuwal, Saudi Arabia and sampled over a period of 4 months. Findings revealed that nutrient enrichment alone affected neither algal dry mass nor algae-derived C or N production. In contrast, herbivore exclusion significantly increased algal dry mass up to 300-fold, and in conjunction with nutrient enrichment, this total increased to 500-fold. Though the increase in dry mass led to a 7 and 8-fold increase in organic C and N content, respectively, the algal C/N ratio (18±1) was significantly lowered in the combined treatment relative to controls (26±2). Furthermore, exclusion of herbivores significantly increased the relative abundance of filamentous algae on the light-exposed tiles and reduced crustose coralline algae and non-coralline red crusts on the shaded tiles. The combination of the herbivore exclusion and nutrient enrichment treatments pronounced these effects. The results of our study suggest that herbivore reduction, particularly when coupled with nutrient enrichment, favors non-calcifying, filamentous algae growth with high biomass production, which thoroughly outcompetes the encrusting (calcifying) algae that dominates in undisturbed conditions. These results suggest that the healthy reefs of the Central Red Sea may experience rapid shifts in benthic community composition with ensuing effects for biogeochemical cycles if anthropogenic impacts, particularly overfishing, are not controlled.  相似文献   

17.
The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.  相似文献   

18.
The decline of reef‐building corals in conjunction with shifts to short‐lived opportunistic species has prompted concerns that Caribbean reef framework‐building capacity has substantially diminished. Restoring herbivore populations may be a potential driver of coral recovery; however, the impact of herbivores on coral calcification has been little studied. We performed an exclusion experiment to evaluate the impact of herbivory on Orbicella faveolata coral growth over 14 months. The experiment consisted of three treatments: full exclusion cages; half cage procedural controls; and uncaged control plates, each with small O. faveolata colonies. We found that herbivorous fish exclusion had a substantial impact on both macroalgal cover and coral growth. Fleshy macroalgae reached 50% cover within some exclusion cages, but were almost absent from uncaged control plates. Critically, O. faveolata calcification rates were suppressed by almost half within exclusion cages, with monthly coral growth negatively related to overgrowth by fleshy macroalgae. These findings highlight the importance of herbivorous fishes for coral growth and the detrimental impact of macroalgal proliferation in the Caribbean. Policy makers and local managers should consider measures to protect herbivorous fishes and reduce macroalgal proliferation to enable coral communities to continue to grow and function.  相似文献   

19.
Multiple natural and anthropogenic stressors impact coral reefs across the globe leading to declines of coral populations, but the relative importance of different stressors and the ways they interact remain poorly understood. Because coral reefs exist in environments commonly impacted by multiple stressors simultaneously, understanding their interactions is of particular importance. To evaluate the role of multiple stressors we experimentally manipulated three stressors (herbivore abundance, nutrient supply, and sediment loading) in plots on a natural reef in the Gulf of Panamá in the Eastern Tropical Pacific. Monitoring of the benthic community (coral, macroalgae, algal turf, and crustose coralline algae) showed complex responses with all three stressors impacting the community, but at different times, in different combinations, and with varying effects on different community members. Reduction of top–down control in combination with sediment addition had the strongest effect on the community, and led to approximately three times greater algal biomass. Coral cover was reduced in all experimental units with a negative effect of nutrients over time and a synergistic interaction between herbivore exclosures and sediment addition. In contrast, nutrient and sediment additions interacted antagonistically in their impacts on crustose coralline algae and turf algae so that in combination the treatments limited each other’s effects. Interactions between stressors and temporal variability indicated that, while each stressor had the potential to impact community structure, their combinations and the broader environmental conditions under which they acted strongly influenced their specific effects. Thus, it is critical to evaluate the effects of stressors on community dynamics not only independently but also under different combinations or environmental conditions to understand how those effects will be played out in more realistic scenarios.  相似文献   

20.
The present study was conducted on Tamandaré reefs, northeast Brazil and aimed to analyse the importance of different factors (e.g. tourism activity, fishing activity, coral abundance and algal abundance) on reef fish abundance and species richness. Two distinct reef areas (A ver o mar and Caieiras) with different levels of influence were studied. A total of 8239 reef fish individuals were registered, including 59 species. Site 1 (A ver o mar) presented higher reef fish abundance and richness, with dominance of roving herbivores (29.9 %) and mobile invertebrate feeders (28.7 %). In contrast, at Site 2 (Caieiras) territorial herbivores (40.9 %) predominated, followed by mobile invertebrate feeders (24.6 %). Concerning the benthic community, at Site 1 macroalgae were recorded as the main category (49.3 %); however, Site 2 was dominated by calcareous algae (36.0 %). The most important variable explaining more than 90 % of variance on reef fish abundance and species richness was macroalgae abundance, followed by fishing activity. Phase shifts on coral reefs are evident, resulting in the replacement of coral by macroalgae and greatly influencing reef fish communities. In this context, it is important to understand the burden of the factors that affect reef fish communities and, therefore, influence the extinction vulnerability of coral reef fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号