首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

2.
Summary The gene for Friedreich's ataxia (FA), an autosomal recessive neurodegenerative disorder, has been recently assigned to the long arm of chromosome 9. Linkage disequilibrium between FA and two diverse chromosome 9 markers, D9S5 and D9S15, has been detected in French, French-Canadian and Italian populations. Here, we report the physical localization of these loci by in situ hybridization of probes 26P and MCT112S identifying the D9S5 and D9S15 loci, respectively. Experiments performed on lymphocytes carrying a chromosome 9 pericentric inversion have allowed us to assign both the loci to band 9q21. Furthermore, in situ hybridization data and partial sequencing of the probe MCT112S indicate the presence of alphoid satellite DNA within this region. This suggests that MCT112S is more proximal to the centromere than 26P.  相似文献   

3.
Friedreich ataxia (FA) is an autosomal recessive degenerative disease of the nervous system of unknown biochemical cause. The FA gene has been shown to be in close linkage with the two chromosome 9 markers D9S5 and D9S15, and linkage disequilibrium between FA and D9S15 has been detected in French families by Hanauer et al. We used new highly informative markers at the above loci to analyze Italian FA families for linkage and linkage disequilibrium. The new markers were a three-allele BstXI RFLP at D9S5 (PIC = .55) and a six-allele microsatellite, typed by polymerase chain reaction, at D9S15 (PIC = .75). We obtained maximum lod scores of 8.25 between FA and D9S5, 10.55 between FA and D9S15, and 9.52 between D9S5 and D9S15, all at zero recombination. Our results, combined with those reported by other authors, reduce maxlod-1 (maximum lod score minus 1) confidence limits to less than 1.1 cM between FA and D9S5, 1.2 cM between FA and D9S15, and 1.4 cM between D9S5 and D9S15. Linkage disequilibrium with FA was found only for D9S15 when all families were evaluated but was also found for a D9S5/D9S15 haplotype in a subgroup of southern Italian families. We conclude that FA, D9S5, and D9S15 are tightly clustered and that studies of geographically restricted groups may reveal a limited number of mutations responsible for the disease in the Italian population. We present preliminary evidence from pulsed-field gel electrophoresis that D9S5 and D9S15 may be less than 450 kb apart. Linkage disequilibrium between FA and D9S15 suggests that the disease gene may be at an even shorter distance from this marker locus, which therefore represents a very good starting point for cloning attempts.  相似文献   

4.
Summary Friedreich ataxia (FA) is a severe autosomal recessive neurodegenerative disease. The defective gene has been previously assigned to chromosome 9q13-q21 by demonstration of tight linkage to the two independent loci D9S15 and D9S5. Linkage data indicate that FRDA is at less than 1 cM from both markers. Previous physical mapping has shown that probes defining D9S15 (MCT112) and D9S5 (26P) are less than 260kb apart and are surrounded by at least six CpG clusters within 450 kb, which might indicate the presence of candidate genes for FA. We isolated and characterized a 530 kb YAC (yeast artificial chromosome) contig that contains five of the CpG clusters. The YACs were used to search for new polymorphic markers needed to map FRDA precisely with respect to the cloned segment. In particular, we found a (CA)n microsatellite polymorphism, GS4, that detects 13 alleles with a PIC value of 0.83 and allows the definition of haplotypes extending over 310kb when used in combination with polymorphic markers at D9S5 and D9S15.  相似文献   

5.
Linkage analysis of the nail-patella syndrome.   总被引:4,自引:1,他引:3  
Nail-patella syndrome (NPS) is an autosomal dominant disorder characterized by dysplasia of nails and patella, decreased mobility of the elbow, iliac horns, and, in some cases, nephropathy. The disorder has been mapped to the long arm of chromosome 9, but the precise localization and identity of the NPS gene are unknown. Linkage analysis in three NPS families, using highly informative dinucleotide repeat polymorphisms on 9q33-q34, confirmed linkage of NPS to this chromosome. Recombinations were detected, by two-point linkage analysis, between NPS and the centromeric markers D9S60 and the gelsolin gene and the telomeric markers D9S64 and D9S66, in one of the families. Haplotype analysis suggested an additional recombination between NPS and the argininosuccinate synthetase (ASS) gene. These results localize the NPS gene to an interval on 9q34.1, distal to D9S60 and proximal to ASS, comprising a genetic distance of approximately 9 cM. This represents a significant refinement in the localization of the NPS gene.  相似文献   

6.
Fanconi anaemia (FA) is an autosomal recessive disease characterised by genetic heterogeneity, with at least five complementation groups (FA-A to FA-E). The FAC gene has been cloned and localised to 9q22.3. The most frequent defective gene, FAA, was recently mapped to chromosome 16q24.3, in a region of 10 cM between D16S498 and the telomere. Eleven FA-A and 16 unclassified Italian families were analysed by microsatellite markers. To define the localisation of the FAA locus further, microsatellites were analysed at 16q24. All the families were consistent with linkage, the highest lod score being observed with D16S1320. Evidence for common haplotypes was obtained in two genetic isolates from the Brenta basin and the Naples region. Autozygosity mapping and haplotype analysis suggest that the FAA locus is distal to D16S305. Received: 29 July 1996  相似文献   

7.
A linkage analysis with chromosome 9 markers was performed in 33 families with Friedreich ataxia (FA). Linkage with D9S15, previously established by S. Chamberlain et al. (1988, Nature London 334:248-249) was confirmed in our sample (z(theta) = 6.82 at theta = 0.02) while INFB (interferon-beta gene) shows looser linkage. An additional marker, D9S5, was also shown to be closely linked to FA (z(theta) = 5.77 at theta = 0.00).  相似文献   

8.
A linkage map spanning the locus for diastrophic dysplasia (DTD)   总被引:2,自引:0,他引:2  
Diastrophic dysplasia (DTD) is an autosomal recessive osteochondrodysplasia. Patients have short-limbed short stature and suffer from generalized joint dysplasia. We have recently mapped DTD to the distal long arm of chromosome 5. Here we report the localization of DTD in relation to 16 polymorphic markers on distal 5q. No recombinations occurred with two loci, D5S72 and D5S66. One presumptive candidate gene, osteonectin (SPARC), could be excluded on the basis of three recombinations with the DTD locus. Multipoint linkage analysis performed against a fixed order of markers placed DTD between glucocorticoid receptor (GRL) and SPARC favored by the odds of 33:1 over the next best location of DTD between D5S72 and D5S55. The sex-averaged distance between the definite flanking markers, GRL and D5S55, is 17.5 cM. From previously reported data on the physical localization of markers, we conclude that the DTD locus is in 5q31-q34.  相似文献   

9.
A region of minimal deletion in B-cell non-Hodgkin's lymphoma (B-NHL) has recently been defined between D6S186 and D6S227 spanning 5-9 Mb at 6q26-q27, predicting the presence of at least one tumor suppressor gene (TSG) at this locus. During the construction of a deletion map in the B-NHL tumor panel, we report the identification of a Burkitt's lymphoma cell line, BL74, having an apparent homozygous deletion at the D6S347 locus, internal to the critical region. Since this case may facilitate the localization of the target TSG, a detailed structural molecular characterization and search for candidate genes were undertaken at this locus. While BL74 underwent a loss of heterozygosity at 6q26-q27, D6S347 was also likely subjected to a somatic interlocus gene conversion-like event between two homologous but distinct loci, resulting in the homozygous replacement of a 1860- to 2067-bp segment of one locus with the corresponding segment copied from the other locus. Two genes at this locus were identified, but their lack of expression in B-cell lineages tentatively excludes them as candidate TSGs. Another still unidentified gene at this locus may be disrupted by the gene conversion-like event, which would represent a novel mechanism of TSG inactivation.  相似文献   

10.
Friedreich ataxia is a neurodegenerative disorder with autosomal recessive inheritance. Precise linkage mapping of the Friedreich ataxia locus (FRDA) in 9q13-q21 should lead to the isolation of the defective gene by positional cloning. The two closest DNA markers, D9S5 and D9S15, show very tight linkage to FRDA, making difficult the ordering of the three loci. We present a linkage study of three large Friedreich ataxia families of Tunisian origin, with several multiallelic markers around D9S5 and D9S15. Haplotype data were used to investigate genetic homogeneity of the disease in these geographically related families. A meiotic recombination was found in a nonaffected individual, which excludes a 150-kb segment, including D9S15, as a possible location for the Friedreich ataxia gene and which should orient the search in the D9S5 region.  相似文献   

11.
Glutamine synthetase (E.C. 6.3.1.2) is expressed throughout the body and plays an important role in controlling body pH and in removing ammonia from the circulation. The enzyme clearsL-glutamate, the major neurotransmitter in the central nervous system, from neuronal synapses. The enzyme is a very sensitive marker of many disease and aging processes, especially those involving reactive oxygen species. This report describes the localization of the enzyme to chromosome 1 by PCR analysis of a human/rodent somatic cell hybrid panel. We also describe the localization of a recently described pseudogene to chromosome 9. Further localization of the glutamine synthetase gene locus to 1q23 was accomplished by fluorescencein situhybridization. The glutamine synthetase gene was mapped to five CEPH megaYACs between the polymorphic PCR markers D1S117 and D1S466 by analysis of the Whitehead Institute's recently described chromosome 1 contig map.  相似文献   

12.
The myosin light chain kinase (MYLK) gene is duplicated on human chromosome 3 (3q13-->q21; 3p13), two sites known to contain olfactory receptor (OR) genes. The 3p13 site contains a MYLK pseudogene (MYLKP) associated with a cluster of OR pseudogenes and therefore could have arisen from the duplication of a large region in 3q13-->q21. Here, we present the localization of the MYLK gene in a >5-Mb region of the chromosome 3q21 integrated map. MYLK colocalizes with marker D3S3552. OR genes are absent from this region, suggesting that the 3p13 duplicated region incurred further rearrangements during evolution.  相似文献   

13.
14.
Charcot-Marie-Tooth (CMT) disease type 1a has been previously localized to chromosome 17 using the markers D17S58 and D17S71. In that report we were unable to provide unequivocal localization of the CMT1A gene on either the proximal p or the q arm. Therefore, data from one additional CMT1A family and typing of other probes spanning the pericentromeric region of chromosome 17 (D17S73, D17S58, D17S122, D17S125, D17S124) were analyzed. Multipoint analysis demonstrates convincing evidence (log likelihood difference greater than 5) that the CMT1A gene lies within 17p11.2 and most likely between the flanking markers D17S122 and D17S124.  相似文献   

15.
Glutamine synthetase (E.C. 6.3.1.2) is expressed throughout the body and plays an important role in controlling body pH and in removing ammonia from the circulation. The enzyme clears -glutamate, the major neurotransmitter in the central nervous system, from neuronal synapses. The enzyme is a very sensitive marker of many disease and aging processes, especially those involving reactive oxygen species. This report describes the localization of the enzyme to chromosome 1 by PCR analysis of a human/rodent somatic cell hybrid panel. We also describe the localization of a recently described pseudogene to chromosome 9. Further localization of the glutamine synthetase gene locus to 1q23 was accomplished by fluorescencein situhybridization. The glutamine synthetase gene was mapped to five CEPH megaYACs between the polymorphic PCR markers D1S117 and D1S466 by analysis of the Whitehead Institute's recently described chromosome 1 contig map.  相似文献   

16.
We performed genetic mapping studies of an 11-generation pedigree with an autosomal dominant, juvenile-onset motor-systems disease. The disorder is characterized by slow progression, distal limb amyotrophy, and pyramidal tract signs associated with severe loss of motor neurons in the brain stem and spinal cord. The gene for this disorder, classified as a form of juvenile amyotrophic lateral sclerosis (ALS), is designated "ALS4." We performed a genomewide search and detected strong evidence for linkage of the ALS4 locus to markers from chromosome 9q34. The highest LOD score (Z) was obtained with D9S1847 (Z=18.8, recombination fraction of .00). An analysis of recombinant events identified D9S1831 and D9S164 as flanking markers, on chromosome 9q34, that define an approximately 5-cM interval that harbors the ALS4 gene. These results extend the degree of heterogeneity within familial ALS syndromes, and they implicate a gene on chromosome 9q34 as critical for motor-neuron function.  相似文献   

17.
Loss-of-heterozygosity (LOH) studies have implicated one or more chromosome 11 tumor-suppressor gene(s) in the development of cutaneous melanoma as well as a variety of other forms of human cancer. In the present study, we have identified multiple independent critical regions on this chromosome by use of homozygosity mapping of deletions (HOMOD) analysis. This method of analysis involved the use of highly polymorphic microsatellite markers and statistics to identify regions of hemizygous deletion in unmatched melanoma cell line DNAs. Regions of loss were defined by the presence of an extended region of homozygosity (ERH) at > or =5 adjacent markers and having a statistical probability of < or =.001. Significant ERHs were similar in nature to deletions identified by LOH analyses performed on uncultured melanomas, although a higher frequency of loss (24 [60%] of 40 vs. 16 [34%] of 47) was observed in the cell lines. Overall, six small regions of overlapping deletions (SROs) were identified on chromosome 11 flanked by the markers D11S1338/D11S907 (11p13-15.5 [SRO1]), D11S1344/D11S11385 (11p11.2 [SRO2]), D11S917/D11S1886 (11q21-22.3 [SRO3]), D11S927/D11S4094 (11q23 [SRO4]), AFM210ve3/D11S990 (11q24 [SRO5]), and D11S1351/D11S4123 (11q24-25 [SRO6]). We propose that HOMOD analysis can be used as an adjunct to LOH analysis in the localization of tumor-suppressor genes.  相似文献   

18.
Pleomorphic adenomas are benign epithelial tumors originating from the major and minor salivary glands. Extensive cytogenetic studies have demonstrated that they frequently show chromosome abnormalities involving chromosome 8, with consistent breakpoints at 8q12. In previous studies, we have shown that these breakpoints are located in a 9-cM interval betweenMOS/D8S285 and D8S260. Here, we describe directional chromosome walking studies starting from D8S260 as well as D8S285. Using the CEPH and ICRF YAC libraries, these studies resulted in the construction of two nonoverlapping YAC contigs of about 2 and 5 Mb, respectively. Initial fluorescencein situhybridization (FISH) analysis suggested that the majority of 8q12 breakpoints clustered within the 2-Mb contig, which was mapped to the centromeric part of chromosome band 8q12. This contig has at least double coverage and consists of 34 overlapping YAC clones. The localization of the YACs was confirmed by FISH analysis. On the basis of mapping data of landmarks with an average spacing of 65 kb as well as restriction enzyme analysis, a long-range physical map was established for the chromosome region spanned by the 2-Mb contig. The relative positions of various known genes and expressed sequence tags within this contig were also determined. Subsequent FISH analyses of pleomorphic adenomas using YACs as well as cosmids revealed that all but two of the 8q12 breakpoints in the primary tumors tested mapped within a 300-kb interval between theMOSproto-oncogene and STS EM156. The target gene affected by the chromosome aberrations mapping within this interval was recently shown to be thePLAG1gene, which encodes a novel zinc finger protein.  相似文献   

19.
20.
The enzymes of the 17β-hydroxysteroid dehydrogenase (17β-HSD) gene family are responsible for a key step in the formation and degradation of androgens and estrogens: catalyzing the interconversion of 17-ketosteroids and their active 17β-hydroxysteroid counterparts. The structure of human type II 17β-HSD cDNA was recently reported. This enzyme catalyzes the interconversion of Δ4-androstenedione and testosterone, androstanedione and dihydrotestosterone, and estrone and 17β-estradiol, whereas type I 17β-HSD catalyzes exclusively the interconversion of estrogens. To locate the HSD17B2 gene, the novel dinucleotide CA repeat sequence found 571 bp downstream from the end of exon 1 was genotyped into eight CEPH reference families by PCR. Two-point linkage analysis was performed between the latter polymorphism and the 2066 microsatellite markers of Généthon. The maximal pairwise lod score (Zmax = 33.3) with a maximal recombination fraction (θmax) of 0.008 was obtained with the marker D16S422 located on 16q24.1–q24.2. To define further the localization of the HSD17B2 gene, we constructed a high-resolution genetic map of the region flanking the polymorphic HSD17B2 gene including eight Généthon markers. The order of the HSD17B2 gene and markers is qter-D16S516 — D16S504 — D16S507 — D16S505 — D16S511 — [HSD17B2—D16S422]—D16S520—D16S413—tel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号