首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two isoenzymes of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been separated from the plant fraction of soybean (Glycine max L. Merr. cv Williams) nodules by a procedure involving (NH4)2SO4 gradient fractionation, gel chromatography, chromatofocusing, and affinity chromatography. The isoenzymes, which have been termed glucose 6-phosphate dehydrogenases I and II, were specific for NADP+ and glucose 6-phosphate and had optimum activity at pH 8.5 and pH 8.1, respectively. Both isoenzymes were labile in the absence of NADP+. The apparent molecular weight of glucose 6-phosphate dehydrogenases I and II at pH 8.3 was estimated by gel chromatography to be approximately 110,000 in the absence of NADP+ and double this size in the presence of NADP+. The apparent molecular weight did not increase when glucose 6-phosphate was added with NADP+ at pH 8.3. Both isoenzymes had very similar kinetic properties, displaying positive cooperativity in their interaction with NADP+ and negative cooperativity with glucose 6-phosphate. The isoenzymes had half-maximal activity at approximately 10 micromolar NADP+ and 70 to 100 micromolar glucose 6-phosphate. NADPH was a potent inhibitor of both of the soybean nodule glucose 6-phosphate dehydrogenases.  相似文献   

2.
Isoenzymes of glucose-6-phosphate dehydrogenase and 6-P-gluconate dehydrogenase from a 70% ammonium sulfate precipitate of spinach leaf homogenate were separated by differential solubilization in a gradient of 70-0% ammonium sulfate and analyzed by disc gel electrophoresis. Isolated whole chloroplasts contained isoenzyme 1 of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase 1, whereas isoenzyme 2 of each was found in the soluble cytosol fraction. Both isoenzymes of each dehydrogenase were present in about equal amounts. Glucose-6-phosphate dehydrogenase isoenzymes 1 and 2 had pH optima of 9.2 and 9.0 and Km values of 400 and 330 μm, respectively. Molecular weights for both isoenzyme of glucose-6-phosphate dehydrogenase were very similar at about 105,000 ± 10% as estimated by sedimentation velocity measurements. For 6-phosphogluconate dehydrogenase isoenzymes 1 and 2 the pH optima were 9.0 and 9.3, respectively, the Km values were 100 and 80 μm, and the apparent molecular weights were also nearly identical at about 110,000 ± 10%. The data support the hypothesis that leaf cells have two oxidative pentose phosphate pathways, one in the chloroplast and the other in the cytosol.  相似文献   

3.
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was purified from mycelium of Aspergillus parasiticus (1-11-105 Whl). The enzyme had a molecular weight of 1.8 × 105 and was composed of four subunits of apparently equal size. The substrate specificity was very strict, only glucose 6-phosphate and glucose being oxidized by NADP or thio-NADP. Zinc ion was a powerful inhibitor of the enzyme, inhibition being competitive with respect to glucose 6-phosphate, with Ki about 2.5 μm. Other divalent metal ions which also serve as inhibitors are nickel, cadmium, and cobalt. It is proposed that the stimulation of polyketide synthesis by zinc ion may be mediated in part by inhibition of glucose-6-phosphate dehydrogenase.  相似文献   

4.
Palmitoyl-CoA inhibited crude glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the eggs of the sea urchin, Hemicentrotus pulcherrimus. Fifty percent inhibition of the glucose 6-phosphate dehydrogenase in the supernatant of unfertilized eggs was obtained with 0.43 ± 0.05 μm palmitoyl-CoA, and of 6-phosphogluconate dehydrogenase with 4.41 ± 0.20 μm palmitoyl-CoA. Also, these enzymes in fertilized eggs 30 min after fertilization were inhibited by palmitoyl-CoA almost as much as in unfertilized eggs. Na-Palmitate, coenzyme A, acetyl-CoA, palmitoylcarnitine, and carnitine failed to exert any inhibitory effect on the activities of these dehydrogenases. The intracellular concentration of long-chain fatty acyl-CoA in unfertilized eggs (3.08 ± 0.33 nmol/106 eggs) was high enough for the inhibition of these enzymes, and decreased following fertilization to a low level (1.49 ± 0.08 nmol/106 eggs 30 min after fertilization). Spermine and spermidine canceled the inhibition of these enzymes by palmitoyl-CoA. In view of the inhibition of glucose 6-phosphate dehydrogenase and of 6-phosphogluconate dehydrogenase by palmitoyl-CoA, these dehydrogenases in the pentose monophosphate cycle are probably inhibited in unfertilized eggs by long-chain fatty acyl-CoA and released from the inhibited state by both the decrease in the level of long-chain acyl-CoA and the increase in the level of polyamines following fertilization.  相似文献   

5.
A simple procedure for the isolation of crystalline glucose-6-phosphate dehydrogenase from dried Candida is described. The procedure allows the simultaneous purification of phosphogluconate dehydrogenase and ribose phosphate isomerase. The glucose phosphate dehydrogenase is electrophoretically homogeneous; its specific activity is about twice that of the best preparations reported previously. Isoelectric focusing over a distance of 1 m reveals 2 peaks of glucose-6-phosphate dehydrogenase activity.  相似文献   

6.
An NAD-dependent glycerol 3-phosphate dehydrogenase (sn-glycerol 3-phosphate: NAD oxidoreductase; EC 1.1.1.8) has been purified from spinach leaves by a three-step procedure involving ion-exchange, gel filtration, and affinity chromatography. The enzyme has been purified over 10,000-fold to a specific activity of 38. It has a molecular weight of approximately 63,500. The pH optimum for the reduction of dihydroxyacetone phosphate is 6.8 and for glycerol 3-phosphate oxidation it is 9.5. During dihydroxyacetone phosphate reduction hyperbolic kinetics were observed when either NADH or dihydroxyacetone phosphate was the variable substrate, but concentrations of NADH greater than 150 μm were inhibitory. Michaelis constants were 0.30–0.35 mm for dihydroxyacetone phosphate and 0.01 mm for NADH. Glycerol 3-phosphate oxidation obeyed Michaelis-Menten kinetics with a Km of 0.19 mm for NAD and 1.6 mm for glycerol 3-phosphate. The enzyme was specific for those substrates, and dihydroxyacetone, glyceraldehyde, glyceraldehyde 3-phosphate, NADPH, NADP, and glycerol were not utilized. The spinach leaf enzyme appears to be in the cytoplasm and probably functions for the production of glycerol 3-phosphate from dihydroxyacetone phosphate.  相似文献   

7.
The activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases, transketolase, phosphoglucose isomerase, and fructose 6-phosphate kinase were studied in extracts of wintering poplar (Populus gelrica) xylem. The xylem of wintering poplar showed high levels of transketolase, glucose 6-phosphate, and 6-phosphogluconate dehydrogenases. On recommencement of growth, the two dehydrogenase activities decreased. The three remaining enzymes appeared to be unchanged. In spring and early summer, glucose 6-phosphate dehydrogenase of the xylem was extremely low. On the other hand, 6-phosphogluconate dehydrogenase, which also became lower during the metabolic shift from winter to spring, was readily detected, and was several times higher than glucose 6-phosphate dehydrogenase throughout the year. The low dehydrogenase activities lasted into late October and then appeared to resume their original activity. A shift of metabolism at the beginning of growth was also observed by measuring the amount of sugar phosphates, soluble amino acids and amides, and proteins in the xylem. In contrast to the decrease of the two dehydrogenases and soluble proteins at the time of budding, incorporation of lysine-U-14C into the xylem protein ramained constant. A method to transfuse radioactive compounds into a section of stem was described.  相似文献   

8.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

9.
Regulation of the tyrosine oxidizing system in fetal rat liver   总被引:2,自引:0,他引:2  
The formation of glucose 6-arsenate and glucose 6-phosphate shows similar thermodynamic constants: both reactions are endothermic, endergonic, and occur with a decrease of entropy. However, the kinetic coefficients of the spontaneous formation of the arsenate esters are ca. 105 times greater than those of their homologous phosphate esters. The activation energy of the spontaneous formation of glucose 6-arsenate (E = + 12 kcal mol?1) is even smaller than that of the formation of glucose 6-phosphate by alkaline phosphate (E = + 13 kcal mol?1). Similar to the case of the monoalkylphosphates, the monoanion species of glucose 6-arsenate is much more reactive than the dianion species. This is an important difference with respect to glucose 6-phosphate. The calculated half-lives at 25 °C and pH 7.0 of glucose 6-arsenate and 6-arsenogluconate are only ca. 6 and 30 min, respectively; they increase at lower temperatures and alkaline pH. At 0 °C and pH 9.0 the half-life of glucose 6-arsenate is ca. 20 h. Therefore, arsenate esters could probably be isolated for use as a tool in biochemical studies. Arsenate esters are good analogs of the phosphate esters for a variety of enzymes. Glucose-6-phosphate dehydrogenase shows nearly similar values of Km and V for either glucose 6-phosphate or glucose 6-arsenate, and hexokinase is similarly inhibited by both compounds. 6-Phosphogluconate dehydrogenase has the same V with respect to 6-phosphogluconate and 6-arsenogluconate although the enzyme shows a much lower affinity for the latter substrate.  相似文献   

10.
Human glucose 6-phosphate dehydrogenase (d-glucose 6-phosphate: NADP oxidoreductase, EC 1.1.1.49) (A+), an electrophoretically distinguishable variant found in Negroes, was purified by column chromatographic techniques. The sedimentation patterns of analytical ultracentrifugation and interference patterns of sedimentation equilibrium indicate a homogeneous preparation. The molecular weight (by sedimentation equilibrium method) was estimated as 230,000, which was closely similar to that of the normal wild type enzyme (B+). The sedimentation constant of the variant enzyme (S 20,w=9.0) was smaller than that of the B+ enzyme (S 20,w=10.0). The molecular weight was about 45,000 in 4 mguanidine hydrochloride, indicating that the A+ enzyme, as well as the B+ enzyme, consisted of six subunits of similar size. The optimal pH of the variant enzyme was slightly higher than that of the B+ enzyme. In contrast to the B+ enzyme, magnesium ion increased the A+ enzyme activity with NAD as substrate. The Michaelis constants and the turnover rate were similar to those of the B+ enzyme. The A+ enzyme was serologically indistinguishable from the B+ enzyme when the anti-B+ serum was used as antibody. No significant difference was found in the amino acid composition of acid hydrolysates of the B+ and the A+ enzymes. This does not exclude an amino acid substitution, and, in fact, a single amino acid substitution, i.e., asparagine in B+ and aspartic acid in A+ enzyme, has been found and is being being reported separately.Supported by Research Grant HD-02497-01 and H-3901 from the National Institutes of Health.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme involved in the pentose phosphate pathway. This works represents purification of two buffalo liver glucose-6-phosphate dehydrogenases (BLG6PD1 and BLG6PD2) using combination of ammonium sulfate precipitation and several chromatographic columns. Both enzymes (BLG6PD1 and BLG6PD2) were homogenous on both native PAGE as well as 12 % SDS PAGE with molecular weights of 28 and 66 kDa. The molecular weight of BLG6PD1 and BLG6PD2 native forms were determined to be 28 and 66 kDa by gel filtration; indicating monomeric proteins. The K m values for BLG6PD1 and BLG6PD2 estimated to be 0.059 and 0.06 mM of β-nicotinamide adenine dinucleotide phosphate. The optimum activity of BLG6PD1 and BLG6PD2 were displayed at pH 8.0 and 8.2 with an isoelectric point (pI) of pH 7.7–7.9 and 5.7–5.9. The divalent cations MgCl2, and CoCl2 act as activators, on the other hand, FeCl2, CuCl2 and ZnCl2 are potent inhibitors of BLG6PD1 and BLG6PD2 activity. NADPH inhibited both isoenzymes competitively with Ki values of 0.012 and 0.030 mM. This study describes a reproducible purification scheme of G6PD from the liver of buffalo as a rich source.  相似文献   

12.
Enzymes of glucose metabolism in normal mouse pancreatic islets   总被引:14,自引:14,他引:0       下载免费PDF全文
1. Glucose-phosphorylating and glucose 6-phosphatase activities, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP+-linked isocitrate dehydrogenase, `malic' enzyme and pyruvate carboxylase were assayed in homogenates of normal mouse islets. 2. Two glucose-phosphorylating activities were detected; the major activity had Km 0.075mm for glucose and was inhibited by glucose 6-phosphate (non-competitive with glucose) and mannoheptulose (competitive with glucose). The other (minor) activity had a high Km for glucose (mean value 16mm) and was apparently not inhibited by glucose 6-phosphate. 3. Glucose 6-phosphatase activity was present in amounts comparable with the total glucose-phosphorylating activity, with Km 1mm for glucose 6-phosphate. Glucose was an inhibitor and the inhibition showed mixed kinetics. No inhibition of glucose 6-phosphate hydrolysis was observed with mannose, citrate or tolbutamide. The inhibition by glucose was not reversed by mannoheptulose. 4. 6-Phosphogluconate dehydrogenase had Km values of 2.5 and 21μm for NADP+ and 6-phosphogluconate respectively. 5. Glucose 6-phosphate dehydrogenase had Km values of 4 and 22μm for NADP+ and glucose 6-phosphate. The Km for glucose 6-phosphate was considerably below the intra-islet concentration of glucose 6-phosphate at physiological extracellular glucose concentrations. The enzyme had no apparent requirement for cations. Of a number of possible modifiers of glucose 6-phosphate dehydrogenase, only NADPH was inhibitory. The inhibition by NADPH was competitive with NADP+ and apparently mixed with respect to glucose 6-phosphate. 6. NADP+–isocitrate dehydrogenase was present but the islet homogenate contained little, if any, `malic' enzyme. The presence of pyruvate carboxylase was also demonstrated. 7. The results obtained are discussed with reference to glucose phosphorylation and glucose 6-phosphate oxidation in the intact mouse islet, and the possible nature of the β-cell glucoreceptor mechanism.  相似文献   

13.
Mitochondrial NADH dehydrogenase has been purified to homogeneity by resolution of Complex I from beef heart mitochondria with the chaotrope NaClO4 and precipitation of the enzyme with ammonium sulfate. The enzyme is water-soluble, has a molecular weight of 69,000 ± 1000 as determined by gel filtration on Sephadex G-100 and agarose 1.5 M. It is an iron-sulfur flavoprotein, with the ratio of flavin (FMN) to nonheme iron to labile sulfide being 1:5–6:5–6. The FMN content suggests a minimum molecular weight of 74,000 ± 3000 for the enzyme. NADH dehydrogenase is composed of three subunits with apparent Mr values, as determined by acrylamide gel electrophoresis as well as by gel filtration on agarose 5 M both in the presence of sodium dodecyl sulfate, of about 51,000, 24,000, and 9–10,000. Coomassie blue stain intensities of the subunits on acrylamide gels suggest that they are present in NADH dehydrogenase in equimolar amounts. However, summation of the apparent Mr values of the dodecyl sulfate-treated subunits appears to overestimate the molecular weight of the native enzyme. The amino acid compositions of NADH dehydrogenase and of each of the isolated and purified subunits have been determined. NADH dehydrogenase catalyzes the oxidation of NADH and NADPH by quinones, ferric compounds, and NAD (3-acetylpyridine adenine dinucleotide was used). All the activities of NADH dehydrogenase are greatly stimulated by addition of guanidine (up to 150 mm), alkylguanidines, arginine, and arginine methyl ester to the assay medium. Phosphoarginine had no effect. These results pointed to the importance of the positively charged guanido group, which appears to interact with and neutralize the negative charges on NAD(P)H and thereby allow for better enzyme-substrate interaction. In the absence of guanidine, NADPH is essentially unoxidized by the enzyme at pH values above 6.0. However, both NADPH dehydrogenase and NADPH → NAD transhydrogenase activities increase dramatically as the assay pH is lowered below pH = 6. Since the pK of the 2′-phosphate of NADPH is 6.1, it appears that the above pH effect is related to protonation of the 2′-phosphate, thus rendering NADPH a closer electronic analog of NADH, which is the primary substrate of the enzyme.  相似文献   

14.
The adenosone 5'-triphosphate-insensitive glucose 6-phosphate dehydrogenase from Pseudomonas cepacia has been found to be strongly inhibited by long-chain fatty acids and their acyl coenzyme A esters, suggesting that an important role of this isoenzyme might be to provide reduced nicotinamide adenine dinucleotide phosphate for reductive steps in fatty acid synthesis. The enzyme, which has been redesignated the fatty acid-sensitive glucose 6-phosphate dehydrogenase, has been purified to homogeneity using affinity chromatography with nicotinamide adenine dinulceotide phosphate-substituted Sepharose as a key step in the purification. The purified preparations were used to study the immunological properties and subunit composition of the enzyme and its relationship to the adenosine 5'-triphosphate-sensitive glucose 6-phosphate dehydrogenase present in extracts of P. cepacia. Although both enzymes were found to be composed of similar size subunits of about 60,000 daltons, immunological studies failed to demonstrate any antigenic similarity between them. Studies of the sedimentation behavior of the fatty acid-sensitive enzyme in sucrose gradients indicated that its apparent molecular weight is increased in the presence of glucose 6-phosphate and suggest that it may exist in an aggregated state in vivo. Palmitoyl coenzyme A, which strongly inhibited the enzyme, failed to influence its sedimentation behavior.  相似文献   

15.
Characterization of starch breakdown in the intact spinach chloroplast   总被引:23,自引:19,他引:4       下载免费PDF全文
Starch degradation with a rate of 1 to 2 microgram-atom carbon per milligram chlorophyll per hour was monitored in the isolated intact spinach (Spinacia oleracea) chloroplast which had been preloaded with 14C-starch photosynthetically from 14CO2. Starch breakdown was dependent upon inorganic phosphate and the 14C-labeled intermediates formed were principally those of the Embden-Meyerhof pathway from glucose phosphate to glycerate 3-phosphate. In addition, isotope was found in ribose 5-phosphate and in maltose and glucose. The appearance of isotope in the intermediates of the Embden-Meyerhof pathway but not in the free sugars was dependent upon the inorganic phosphate concentration. Dithiothreitol shifted the flow of 14C from triose-phosphate to glycerate 3-phosphate. Iodoacetic acid inhibited starch breakdown and caused an accumulation of triose-phosphate. This inhibition of starch breakdown was overcome by ATP. The inhibitory effect of ionophore A 23187 on starch breakdown was reversed by the addition of magnesium ions. The formation of maltose but not glucose was impaired by the ionophore. The inhibition of starch breakdown by glycerate 3-phosphate was overcome by inorganic phosphate. Fructose 1,6-bisphosphate and ribose 5-phosphate did not affect the rate of polysaccharide metabolism but increased the flow of isotope into maltose. Starch breakdown was unaffected by the uncoupler (trifluoromethoxyphenylhydrazone), electron transport inhibitors (rotenone, cyanide, salicylhydroxamic acid), or anaerobiosis. Hexokinase and the dehydrogenases of glucose 6-phosphate and gluconate 6-phosphate were detected in the chloroplast preparations. It was concluded (a) that chloroplastic starch was degraded principally by the Embden-Meyerhof pathway and by a pathway involving amylolytic cleavage; (b) ATP required in the Embden-Meyerhof pathway is generated by substrate phosphorylation in the oxidation of glyceraldehyde 3-phosphate to glycerate 3-phosphate; and (c) the oxidative pentose phosphate pathway is the probable source of ribose 5-phosphate.  相似文献   

16.
The subcellular distribution of NADP+ and NAD+-dependent glucose-6-phosphate and galactose-6-phosphate dehydrogenases were studied in rat liver, heart, brain, and chick brain. Only liver particulate fractions oxidized glucose-6-phosphate and galactose-6-phosphate with either NADP+ or NAD+ as cofactor. While all of the tissues examined had NADP+-dependent glucose-6-phosphate dehydrogenase activity, only rat liver and rat brain soluble fractions had NADP+-dependent galactose-6-phosphate dehydrogenase activity. Rat liver microsomal and rat brain soluble galactose-6-phosphate dehydrogenase activities were kinetically different (Km's 0.5 mm and 10 mm, respectively, for galactose-6-phosphate), although their reaction products were both 6-phosphogalactonate. Rat brain subcellular fractions did not oxidize 6-phosphogalactonate with either NADP+ or NAD+ cofactors but phosphatase activities hydrolyzing 6-phosphogalactonate, galactose-6-phosphate and galactose-1-phosphate were found in crude brain homogenates. In addition, galactose-6-phosphate and 6-phosphogalactonate were tested as inhibitors of various enzymes, with largely negative results, except that 6-phosphogalactonate was a competitive inhibitor (Ki = 0.5 mM) of rat brain 6-phosphogluconate dehydrogenase.  相似文献   

17.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

18.
The consequences of trypsin treatment of rabbit muscle phosphofructokinase, in terms of the physical and kinetic properties of the enzyme, have been investigated. At 1% trypsin (w/w) and 25 °C, no activity is lost over a period of 60 min. The complex sedimentation behavior at pH 8 (three peaks) is unchanged by this treatment as is the extent of dissociation of the enzyme when the pH is lowered from 8 to 6 or reassociation when the pH is raised back to 8. However, the trypsin-treated enzyme shows a subunit molecular weight, determined in the guanidine HCl or 0.5 m acetic acid, of 35,000–40,000 compared to the subunit molecular weight of the untreated enzyme at 75,000–80,000. Similarly, SDS gels give only a single species of about 80,000 for the native enzyme but two species, 42,000 and 48,000, for the trypsin-treated enzyme. Kinetic studies showed no differences in the regulatory properties of the enzyme including fructose 6-phosphate cooperativity, ATP inhibition, NH4+ activation, and cAMP activation. Small differences in stability and inhibition by citrate and creatine phosphate were observed.  相似文献   

19.
An enzyme capable of hydrolyzing myo-inositol 1-phosphate was identified and partially purified from the erythrocytes of 7-day chicks. It has an apparent molecular weight of approximately 60,000, is heat stable, and has a pH of optimal activity between 6.5 and 7.3. In most regards the kinetic properties are similar to the myo-inositol 1-phosphatases of rat testis, rat mammary gland, bovine brain, and of yeast. The enzyme has an absolute requirement for a divalent cation; Mg2+ gave the greatest activity, with an optimal concentration of 2.5 mm in the standard assay employed. Zn2+, Co2+, and Mn2+ supported activity to a lesser degree. Activity was inhibited by NaF, HgCl2, and p-hydroxymercuribenzoate. myo-Inositol tetrakis (dihydrogen phosphate) and myo-inositol 1,3,4,5,6-pentakis (dihydrogen phosphate) were not substrates for this enzyme and inhibited the hydrolysis of myo-inositol 1-phosphate. Unlike other phosphatases for myo-inositol 1-phosphate, this enzyme cleaved myo-inositol 1-phosphate (Km = 8.6 × 10?5 m) and myo-inositol 2-phosphate (Km = 2.86 × 10?4 m) at approximately the same rates. It also hydrolyzed 2′-purine and pyrimidine ribonucleotides about as well as myo-inositol 1-phosphate, but was only 20–30% as active against the 3′-ribonucleotides and had scarcely any activity against the 5′-ribonucleotides. The amount of enzyme activity in erythrocytes of embryos, chicks, and mature chickens was the same (~29 μmol/ml rbc/h). The biological function of this enzyme in avian erythrocytes is unclear at this time. Other tissues containing this phosphatase also have an enzyme which synthesizes myo-inositol 1-phosphate from glucose 6-phosphate, but we have been unable to detect the presence of such an enzyme in avian erythrocytes.  相似文献   

20.
By specific enzymic synthesis of the substrate 6-phosphogluconolactone in situ, the Km for rat liver 6-phosphogluconolactonase was found to be 80 μM. This value is approximately 100 fold lower than the previously determined value, and is compatible with the kinetic paramaters of both glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, and hence with the flux through the oxidative segment of the pentose phosphate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号