首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The effects of hydrogen peroxide on the beta-adrenergic and muscarinic responses of the rat trachea muscle were studied in vitro, after feeding rats, for 6 weeks, either a diet deficient in vitamin E and selenium or a control diet. In the control situation after incubation with 1 mM hydrogen peroxide for 30 min, a reduction of the maximal response to methacholine of 39% occurred whereas no pD2 shift could be demonstrated. Moreover, no response to isoprenaline after precontraction with 3 x 10(-7) M methacholine was left. In the deficient situation, we found a reduction to 64% of the response to methacholine after incubation with 1 mM hydrogen peroxide. Again isoprenaline became inactive, i.e. no relaxation with isoprenaline was observed after precontraction with 3 x 10(-7) M methacholine. We therefore conclude that vitamin E and selenium protect against oxidative stress in lung tissue and thus regulate the (patho-) physiological balance between adrenergic and muscarinic responses.  相似文献   

2.
Radioligand binding was conducted on airways of the rat and human, surgically subdivided into trachea, lung airways, and parenchyma. 3H-QNB bound uniformly to receptors in separate sections of the rat and human airway. Receptor densities generally were ranked: lung airways greater than trachea greater than parenchyma. Receptor subtypes were identified mostly by pirenzepine displacement of bound 3H-QNB. The rat trachea, and rat and human lung airways had a uniformly low affinity for pirenzepine while rat and human parenchyma demonstrated both high and low affinity pirenzepine binding. Inhibition of methacholine-stimulated smooth muscle contraction by the M1 receptor antagonist, pirenzepine, and M2 receptor antagonist, gallamine, was studied in rat trachea and bronchus in vitro. Schild plot pA2 values were compatible with low potency antagonism, thereby favoring the presence of M3 receptors at these smooth muscle sites. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) produced a decrease in peak tension in response to methacholine without changing the muscarinic receptor character (Kd 3H-QNB), population density (Bmax in fmol mg-1 protein), or function (methacholine EC50). These results indicate that muscarinic receptor heterogeneity exists in the airway of both laboratory rat and man. While the muscarinic receptor subserving airway smooth muscle contraction appears to be the M3 subtype, decreased contractile responses to methacholine by trachea and bronchus from reserpine-treated rats were receptor independent.  相似文献   

3.
Both substance-P and vasoactive intestinal peptide (VIP) have previously been demonstrated to contract and relax, respectively, the isolated guinea pig trachea. In addition, substance-P and VIP have been localized within the pulmonary innervation of various species. In the present studies, substance-P was found to cause a concentration-related contraction of isolated lung parenchymal strips of the guinea pig, as well as isolated tracheal strips. VIP caused a significant concentration-related relaxation of the isolated tracheal strip, but not the lung parenchymal strip. Indomethacin, a prostaglandin synthetase inhibitor, potentiated the contractile response of the trachea to substance-P and inhibited the VIP- and isoproterenol-induced relaxation. These studies are potentially important in understanding the pathogenesis of bronchospastic disorders, since alterations in prostaglandin biosynthesis may result in hyperreactivity of airways to contractile agonists such as neurotransmitters, as well as an inhibition of relaxation induced by endogenous substances such as VIP or β agonists.  相似文献   

4.
J B Cheng  R G Townley 《Life sciences》1982,30(24):2079-2086
This study was undertaken to compare the activity of muscarinic and beta adrenergic receptors in bovine peripheral lung to the corresponding receptor activity in tracheal smooth muscle. We used [3H] quinuclidinyl benzilate (QNB) and [3H]dihydroalprenolol (DHA) to measure muscarinic and beta receptor activity, respectively. Binding to QNB and DHA at 25 degrees C was rapid, reversible, saturable and of high affinity. The order of potency for cholinergic and adrenergic agents competing for binding was compatible with muscarinic and beta 2 adrenergic potencies. We found that the concentration of muscarinic receptor binding sites was 37-fold greater in the tracheal muscle preparation (2805 +/- 309 fmol/mg protein) than in the peripheral lung preparation (76 +/- 28 fmol/mg protein). Unlike muscarinic receptors, the lung contained 8-fold higher concentration of the beta adrenergic receptors than did the tracheal muscle (1588 +/- 417 vs. 199 +/- 42 fmol/mg protein). The dissociation constant or the agonist's inhibitory constant (Ki) for either receptor binding site, however, was not significantly different between the two tissues. Furthermore, in vitro contraction studies showed that the response of tracheal muscle strips to methacholine was markedly greater than the response of peripheral lung strips, a finding consistent with the QNB binding result. The muscle but not the peripheral lung strip exhibited a relaxing response to epinephrine. Our data indicate a striking quantitative difference in muscarinic and beta adrenergic receptors between lung tissue and tracheal muscle, and that each receptor in the lung is qualitatively similar to the corresponding receptor in the muscle.  相似文献   

5.
The pharmacology of leukotrienes (LT) C4 and D4 in isolated airway smooth muscle was investigated. In rat trachea, neither LTC4 or D4 elicited a response. In contrast, LTC4 was a potent contractile agonist in guinea-pig trachea, bronchus and parenchymal lung strip. Similar effects were obtained with LTD4 in trachea and parenchyma. In trachea and bronchus, the concentration-response curve to LTC4 was biphasic: indomethacin converted the biphasic response curve to a simple sigmoidal shape and enhanced the maximum contractile response. The SRS-A antagonist FPL 55712 antagonized the effect of LTD4 in both trachea and parenchyma. As regards LTC4-induced contraction of trachea and bronchus, FPL 55712, depending on concentration, either antagonized, or antagonized and enhanced the maximum contractile response. The enhancement of the maximum contractile response by FPL 55712 was not apparent when indomethacin was present. FPL 55712 failed to antagonize the effect of LTC4 in parenchyma.  相似文献   

6.
We examined the inhibitory and excitatory components of the nonadrenergic noncholinergic (NANC) innervation of the guinea pig airways by in vivo and in vitro methods. Electrical stimulation of the vagus in chloralose-urethan-anesthetized guinea pigs after cholinergic and adrenergic blockade produced peripheral airway constriction (insufflation pressure) and tracheal relaxation (pouch pressure). Vagal stimulation was applied for 90 s at 5-V pulses of 2-ms duration at frequencies of 5, 15, 25, and 35 Hz in each group (n = 6). The pouch relaxation peaked at 15 Hz. The insufflation pressure was highest at 5 Hz. Field stimulations of the same frequencies were applied on tracheal spirals and lung parenchymal strips. The maximal relaxation of the trachea occurred at 15-35 Hz. The lung parenchymal strip tensions increased almost linearly as the frequency increased from 5 to 35 Hz. The results of the study indicated a frequency-dependent response for both excitatory and inhibitory components of the NANC, which operate at different frequencies for optimal responses.  相似文献   

7.
We have studied the effect of repeated in vivo antigen exposure on in vitro airway responsiveness in sensitized sheep. Fourteen sheep underwent five biweekly exposures to aerosolized Ascaris suum antigen or saline. Following this exposure regimen, the animals were killed and tracheal smooth muscle and lung parenchymal strips were prepared for in vitro studies of isometric contraction in response to histamine, methacholine, prostaglandin F2 alpha, and a thromboxane A2 analogue. No alteration in tracheal smooth muscle responsiveness was observed between saline- and antigen-exposed tissue. In contrast, by use of lung parenchymal strips as an index of peripheral airway responsiveness, significant increases in responsiveness to histamine and a thromboxane A2 analogue (10(-6) and 10(-5) M) were observed in antigen-exposed tissue compared with saline controls. These results demonstrate that repeated antigen exposure in vivo selectively increase the responsiveness of peripheral lung smooth muscle to certain chemical mediators of anaphylaxis.  相似文献   

8.
Evidence for A1 and A2 adenosine receptors in guinea pig trachea   总被引:4,自引:0,他引:4  
The adenosine analogs [5'-N-ethylcarboxamideadenosine (NECA), 2-Chloro-adenosine (2-ClA), R-phenylisopropyladenosine (R-PIA), N6-cyclohexyl adenosine (CHA), and N6-cyclopentyladenosine (CPA)] produced both relaxation and contraction responses in isolated guinea-pig trachea. A concentration-related relaxation response was observed in trachea which were precontracted with either histamine or KC1. This response followed an order of analog potency that was indicative of the A2 receptor subtype (NECA greater than 2-ClA greater than R-PIA greater than CPA greater than CHA). Theophylline, an adenosine-receptor antagonist, blocked this relaxation response. In addition, a concentration-related contractile response was produced with adenosine analogs in those trachea that were not previously contracted. In contrast, the contractile response followed an analog potency indicative of the A1 receptor subtype (R-PIA greater than 2-ClA = CPA = CHA). This contractile response was not mediated by cholinergic, adrenergic or histaminergic receptors. 2-ClA induced a biphasic response, while NECA only relaxed these tissue under basal tone. Unlike the relaxation response, these contractile responses were not attenuated by theophylline, but were blocked by 1,3 dipropyl-8-(2 amino-4-chlorophenyl)xanthine (PACPX). These findings confirm the existence of two subpopulations of adenosine receptors in guinea pig trachealis muscle.  相似文献   

9.
Methacholine causes reflex bronchoconstriction   总被引:1,自引:0,他引:1  
To determine whether methacholine causes vagally mediated reflexconstriction of airway smooth muscle, we administered methacholine tosheep either via the bronchial artery or as an aerosol via tracheostomyinto the lower airways. We then measured the contraction of anisolated, in situ segment of trachealis smooth muscle and determinedthe effect of vagotomy on the trachealis response. Administeringmethacholine to the subcarinal airways via the bronchial artery(0.5-10.0 µg/ml) caused dose-dependent bronchoconstriction andcontraction of the tracheal segment. At the highest methacholine concentration delivered, trachealis smooth muscle tension increased anaverage of 186% over baseline. Aerosolized methacholine (5-7 breaths of 100 mg/ml) increased trachealis tension by 58% and airwaysresistance by 183%. As the bronchial circulation in the sheep does notsupply the trachea, we postulated that the trachealis contraction wascaused by a reflex response to methacholine in the lower airways.Bilateral vagotomy essentially eliminated the trachealis response andthe airways resistance change after lower airways challenge (either viathe bronchial artery or via aerosol) with methacholine. We concludethat 1) methacholine causes asubstantial reflex contraction of airway smooth muscle and2) the assumption may not be validthat a response to methacholine in humans or experimental animalsrepresents solely the direct effect on smooth muscle.

  相似文献   

10.
The effect of phorbol myristate acetate (PMA) was compared with that of histamine on the guinea-pig lung parenchymal strip. PMA, 10(-5) M, caused a slowly developing sustained contraction which had approximately the same magnitude as the maximal histamine contraction. Isoprenaline, at 10(-5) M, caused 86% relaxation of the histamine contraction but only 22% relaxation of the PMA contraction. Forskolin, at 10(-5) M had a similar action to isoprenaline on the effects of both spasmogens while aminophylline, 5 X 10(-4) M, was considerably less effective. Sodium nitroprusside had little effect on the histamine contraction and actually increased the PMA spasm. It is suggested that protein kinase C may have a role in the tonic phase of the contraction of bronchiolar smooth muscle. These findings could have relevance for the delayed phase of asthma, which is known to be insensitive to beta-agonists.  相似文献   

11.
Isovolumetric and isobaric tracheal smooth muscle (TSM) contraction were studied in vitro in a preparation of the whole rabbit trachea. Eight tracheae from New Zealand White rabbits were excised and mounted at a fixed length in an organ bath. Electrical field stimulation (EFS) was performed in isovolumetric and isobaric conditions at varying transmural pressures (TMP). Supramaximal stimulation with methacholine was done at 0 TMP. Active change in pressure (delta P) with EFS showed a peak at 3.1 +/- 1.06 cmH2O TMP during inflation and at 4.1 +/- 1.18 cmH2O TMP during deflation (mean +/- SE). Active delta P decreased at higher or lower TMP. Active change in volume with EFS showed a peak at 3.2 +/- 1.26 cmH2O TMP during inflation and at 1.8 +/- 0.98 cmH2O TMP during deflation. A decrease in response was also observed at higher and lower TMP. From these data, we concluded that TSM is at optimal length (Lmax) at TMP of 2-3 cmH2O. Maximal TSM shortening with supramaximal stimulation with methacholine was 32% Lmax. This figure is considerably smaller than the 80% shortening found in unloaded strips of TSM. We conclude that rabbit TSM length is close to Lmax at TMP similar to those found at functional residual capacity and that the loads that the muscle has to overcome probably contribute to the limited shortening observed in situ.  相似文献   

12.
The pharmacology of leukotrienes (LT) C4 and D4 in isolated airway smooth muscle was investigated. In rat trachea, neither LTC4 or D4 elicited a response. In contrast, LTC4 was a potent contractile agonist in guinea-pig trachea, bronchus and parenchymal lung strip. Similar effects were obtained with LTD4 in trachea and parenchyma. In trachea and bronchus, the concentration-response curve to LTC4 was biphasic: indomethacin converted the biphasic response curve to a simple sigmoidal shape and enhanced the maximum contractile response. The SRS-A antagonist FPL 55712 antagonized the effect of LTD4 in both trachea and parenchyma. As regards LTC4-induced contraction of trachea and bronchus, FPL 55712, depending on concentration, either antagonized, or antagonized and enhanced the maximum contractile response. The enhancement of the maximum contractile response by FPL 55712 was not apparent when indomethacin was present. FPL 55712 failed to antagonize the effect of LTC4 in parenchyma.  相似文献   

13.
Summary The lung of the giant salamander, Amphiuma tridactylum, is divided into respiratory alveoli by muscular septa that increase the surface area of the lung as well as provide a mechanism for its almost complete collapse during exhalation. The epithelium of the internal surface is of two types: respiratory, composed of a single layer of pneumocytes overlying anastomosing capillaries, and non-respiratory, composed of ciliated cells and mucus-secreting goblet cells. Non-respiratory epithelium covers the apical edges of the septa, whereas the respiratory epithelium lines the alveoli. The smooth muscle of the septa and walls of the lung was studied in preparations of uninflated and acetylcholine-contracted lung. The muscle cells are ultrastructurally similar to other types of smooth muscle but are surrounded by extraordinary amounts of extracellular matrix, containing collagen and elastic fibers and numerous fine fibrils of unknown composition. Smooth muscle in isolated lung strips contracted in a dose-dependent manner when treated with acetylcholine or methacholine; contraction was blocked by atropine. Responses of lung strips to adrenergic agents were limited; only high doses of adrenalin caused slight relaxation of previously contracted muscle. These observations support the hypothesis that contraction of pulmonary smooth muscle is responsible for the ventilatory efficiency of the lung.  相似文献   

14.
Contractility of isolated single submucosal gland from trachea   总被引:1,自引:0,他引:1  
We isolated single submucosal glands from canine and feline trachea. Examination by light and electron microscope showed that these isolated glands consist mainly of glandular tissue, and no smooth muscle. Cell components in the glandular tissue were ultrastructurally normal, and myoepithelial cells surrounded acini and secretory tubules. In response to methacholine, the mucus was squeezed from the tip of the collecting ducts in coincidence with the contraction of the glands. The contractile properties of isolated single glands were examined with a force transducer. Cholinergic agents (methacholine and acetylcholine) as well as 40-150 mM K+ showed a dose-response relationship and induced tension up to 12 mg. The length-tension relationship was also observed. The removal of Ca2+ from the medium eliminated contractile response. Caffeine induced approximately 30% of the response to methacholine, and phenylephrine, a tension less than 30% of that with methacholine. These findings suggest that squeezing of mucus due to the contraction of myoepithelial cells has an important effect on secretory response of airway submucosal glands.  相似文献   

15.
Although airway patency is partially maintained by parenchymal tethering, this structural support is often ignored in many discussions of asthma. However, agonists that induce smooth muscle contraction also stiffen the parenchyma, so such parenchymal stiffening may serve as a defense mechanism to prevent airway narrowing or closure. To quantify this effect, specifically how changes in parenchymal stiffness alter airway size at different levels of lung inflation, in the present study, we devised a method to separate the effect of parenchymal stiffening from that of direct airway narrowing. Six anesthetized dogs were studied under four conditions: baseline, after whole lung aerosol histamine challenge, after local airway histamine challenge, and after complete relaxation of the airways. In each of these conditions, we used High resolution Computed Tomography to measure airway size and lung volume at five different airway pressures (0, 12, 25, 32, and 45 cm H2O). Parenchymal stiffening had a protective effect on airway narrowing, a fact that may be important in the airway response to deep inspiration in asthma. When the parenchyma was stiffened by whole lung aerosol histamine challenge, at every lung volume above FRC, the airways were larger than when they were directly challenged with histamine to the same initial constriction. These results show for the first time that a stiff parenchyma per se minimizes the airway narrowing that occurs with histamine challenge at any lung volume. Thus in clinical asthma, it is not simply increased airway smooth muscle contraction, but perhaps a lack of homogeneous parenchymal stiffening that contributes to the symptomatic airway hyperresponsiveness.  相似文献   

16.
When airway smooth muscle is contracted in vitro, the airway lumen continues to narrow with increasing concentrations of agonist until complete airway closure occurs. Although there remains some controversy regarding whether airways can close in vivo, recent work has clearly demonstrated that, if the airway is sufficiently stimulated with contractile agonists, complete closure of even large cartilaginous conducting airways can readily occur with the lung at functional residual capacity (Brown RH and Mitzner W. J Appl Physiol 85: 2012-2017, 1998). This result suggests that the tethering of airways in situ by parenchymal attachments is small at functional residual capacity. However, at lung volumes above functional residual capacity, the outward tethering of airways should increase, because both the parenchymal shear modulus and tethering forces increase in proportion to the transpulmonary pressure. In the present study, we tested whether we could prevent airway closure in vivo by increasing lung volume with positive end-expiratory pressure (PEEP). Airway smooth muscle was stimulated with increasing methacholine doses delivered directly to airway smooth muscle at three levels of PEEP (0, 6, and 10 cmH(2)O). Our results show that increased lung volume shifted the airway methacholine dose-response curve to the right, but, in many airways in most animals, airway closure still occurred even at the highest levels of PEEP.  相似文献   

17.
Functional innervation of cat airways smooth muscle was examined in isolated segments of trachea and bronchi using electrical field stimulation (EFS) techniques. Field stimulation caused contraction in tissues at resting tone and biphasic responses (contraction followed by relaxation) in tissues precontracted with 5-hydroxytryptamine (5-HT). Contractions were abolished by 10(-6) M atropine. Inhibitory responses were dependent on impulse voltage, duration, and frequency. At low voltages (less than or equal to 10 V) and pulse durations (less than or equal to 0.3 ms), EFS induced relaxations were abolished by 3 X 10(-6) M tetrodotoxin (TTX). Greater stimulus parameters elicited TTX-resistant relaxations. Pretreatment of the tissues with 10(-6) M propranolol and 10(-5) M guanethidine caused rightward shifts in relaxation frequency-response curves. These findings indicate that cat airways are innervated by excitatory cholinergic, inhibitory adrenergic, and inhibitory nonadrenergic noncholinergic (NANC) nerves. Pretreatment of the tissues with hexamethonium, cimetidine, indomethacin, or nordihydroguaiaretic acid did not affect NANC relaxation responses. It is concluded that NANC inhibitory responses in cat airway smooth muscle are mediated through intrinsic postganglionic nerve fibers and occur independently of histamine H2-receptor activation and without involvement of cyclooxygenase or lipoxygenase products of arachidonic acid metabolism.  相似文献   

18.
Reactive oxygen species alter pulmonary arterial vascular tone and cause changes in pulmonary vascular resistance. The objective of this investigation was to determine direct effects of oxygen radicals on the contractile properties of pulmonary arterial smooth muscle. Isolated pulmonary arterial rings from Sprague-Dawley rats were placed in tissue baths containing Earle's balanced salt solution (gassed with 95% O2 - 5% CO2, 37 degrees C, pH 7.4). Vessels were contracted with 80 mM KCl to establish maximum active force production (Po). All other responses were normalized as percentages of Po for comparative purposes. Reactive oxygen metabolites were generated enzymatically with either the xanthine oxidase (XO) reaction or the glucose oxidase (GO) reaction, or hydrogen peroxide (H2O2) was added directly to the muscle bath. Exposure to XO, GO, or to H2O2 resulted in a contractile response that was sustained during the 30-min exposure period. The muscle fully relaxed following removal of the reactive oxygen species. Resting tension remained unchanged throughout the experimental period, suggesting no functional change in membrane potential. The contractile response was dose dependent and was not prevented by either cyclooxygenase or lipoxygenase inhibition, or by removal of the endothelium. Pretreatment of vessels with superoxide dismutase (SOD) partially blocked the XO-induced contraction, while mannitol or deferoxamine had no effect on the response to XO. However, pretreatment with catalase (CAT) completely blocked the XO-induced contraction. These data suggest that superoxide ions and hydrogen peroxide are the major causative agents. Following O2-radical exposure, vessels showed a decrease in contractile responsiveness to 80 mM KCl (recovery response), suggesting damage to the smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Release of PGE-like material has been studied on the isolated continuously-superfused cat tracheal muscle using dynamic bioassay methods. The effluent of transmural electrically-stimulated cat tracheal muscle induced a contraction when superfused over the rat stomach fundus strip. This response did not alter with atropine, methysergide, phentolamine and propranolol but was inhibited by aspirin and Sc 19220. The same myotropic activity in the effluent was found when trachea was mechanically stimulated by an additional increase in tension. The effluent from mechanically- and electrically-stimulated tracheal muscle caused a definite relaxation when superfused over a second cat tracheal muscle contracted by serotonin and pretreated with propranolol. Electrically-stimulated cat trachea itself gave a relaxant response which was blocked by propranolol but potentiated by aspirin. From these results it was concluded that both electrical and mechanical stimulation can elicit a release of PGE-like material from isolated cat tracheal muscle.  相似文献   

20.
Prolonged hyperoxic exposure contributes to neonatal lung injury, and airway hyperreactivity is characterized by enhanced contraction and impaired relaxation of airway smooth muscle. Our previous data demonstrate that hyperoxia in rat pups upregulates expression of brain-derived neurotrophic factor (BDNF) mRNA and protein, disrupts NO-cGMP signaling, and impairs cAMP production in airway smooth muscle. We hypothesized that BDNF-tyrosine kinase B (TrkB) signaling plays a functional role in airway hyperreactivity via upregulation of cholinergic mechanisms in hyperoxia-exposed lungs. Five-day-old rat pups were exposed to >or=95% oxygen or room air for 7 days and administered daily tyrosine kinase inhibitor K-252a (50 microg x kg(-1) x day(-1) i.p.) to block BDNF-TrkB signaling or vehicle. Lungs were removed for HPLC measurement of ACh or for in vitro force measurement of lung parenchymal strips. ACh content doubled in hyperoxic compared with room air-exposed lungs. K-252a treatment of hyperoxic pups restored ACh content to room air levels. Hyperoxia increased contraction and impaired relaxation of lung strips in response to incremental electrical field stimulation. K-252a administration to hyperoxic pups reversed this increase in contraction and decrease in relaxation. K-252a or TrkB-Fc was used to block the effect of exogenous BDNF in vitro. Both K-252a and TrkB-Fc blocked the effects of exogenous BDNF. Hyperoxia decreased cAMP and cGMP levels in lung strips, and blockade of BDNF-TrkB signaling restored cAMP but not cGMP to control levels. Therefore, hyperoxia-induced increase in activity of BDNF-TrkB receptor signaling appears to play a critical role in enhancing cholinergically mediated contractile responses of lung parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号