首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Membrane lipids and cytoskeleton dynamics are intimately inter‐connected in the eukaryotic cell; however, only recently have the molecular mechanisms operating at this interface in plant cells been addressed experimentally. Phospholipase D (PLD) and its product phosphatidic acid (PA) were discovered to be important regulators in the membrane–cytoskeleton interface in eukaryotes. Here we report the mechanistic details of plant PLD–actin interactions. Inhibition of PLD by n‐butanol compromises pollen tube actin, and PA rescues the detrimental effect of n‐butanol on F‐actin, showing clearly the importance of the PLD–PA interaction for pollen tube F‐actin dynamics. From various candidate tobacco PLDs isoforms, we identified NtPLDβ1 as a regulatory partner of actin, by both activity and in vitro interaction assays. Similarly to published data, the activity of tobacco PIP2‐dependent PLD (PLDβ) is specifically enhanced by F‐actin and inhibited by G‐actin. We then identified the NtPLDβ1 domain responsible for actin interactions. Using sequence‐ and structure‐based analysis, together with site‐directed mutagenesis, we identified Asn323 and Thr382 of NtPLDβ1 as the crucial amino acids in the actin‐interacting fold. The effect of antisense‐mediated suppression of NtPLDβ1 or NtPLDδ on pollen tube F‐actin dynamics shows that NtPLDβ1 is the active partner in PLD–actin interplay. The positive feedback loop created by activation of PLDβ by F‐actin and of F‐actin by PA provides an important mechanism to locally increase membrane–F‐actin dynamics in the cortex of plant cells.  相似文献   

2.
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT‐PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high‐speed co‐sedimentation and low co‐sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F‐actin. Further biochemical experiments verified that GhPLIM1 protein can protect F‐actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.  相似文献   

3.
SAC (for suppressor of actin) domain proteins in yeast and animals have been shown to modulate the levels of phosphoinositides, thereby regulating several cellular activities such as signal transduction, actin cytoskeleton organization, and vesicle trafficking. Nine genes encoding SAC domain-containing proteins are present in the Arabidopsis thaliana genome, but their roles in plant cellular functions and plant growth and development have not been characterized. In this report, we demonstrate the essential roles of one of the Arabidopsis SAC domain proteins, AtSAC1, in plant cellular functions. Mutation of the AtSAC1 gene in the fragile fiber7 (fra7) mutant caused a dramatic decrease in the wall thickness of fiber cells and vessel elements, thus resulting in a weak stem phenotype. The fra7 mutation also led to reduced length and aberrant shapes in fiber cells, pith cells, and trichomes and to an alteration in overall plant architecture. The AtSAC1 gene was found to be expressed in all tissues in elongating organs; however, it showed predominant expression in vascular tissues and fibers in nonelongating parts of stems. In vitro activity assay demonstrated that AtSAC1 exhibited phosphatase activity toward phosphatidylinositol 3,5-biphosphate. Subcellular localization studies showed that AtSAC1 was colocalized with a Golgi marker. Truncation of the C terminus by the fra7 mutation resulted in its localization in the cytoplasm but had no effect on phosphatase activity. Furthermore, examination of the cytoskeleton organization revealed that the fra7 mutation caused the formation of aberrant actin cables in elongating cells but had no effect on the organization of cortical microtubules. Together, these results provide genetic evidence that AtSAC1, a SAC domain phosphoinositide phosphatase, is required for normal cell morphogenesis, cell wall synthesis, and actin organization.  相似文献   

4.
In preparation for transmission to its mosquito vector, Plasmodium falciparum, the most virulent of the human malaria parasites, adopts an unusual elongated shape. Here we describe a previously unrecognized actin‐based cytoskeleton that is assembled in maturing P. falciparum gametocytes. Differential extraction reveals the presence of a highly stabilized population of F‐actin at all stages of development. Super‐resolution microscopy reveals an F‐actin cytoskeleton that is concentrated at the ends of the elongating gametocyte but extends inward along the microtubule cytoskeleton. Formin‐1 is also concentrated at the gametocyte ends suggesting a role in actin stabilization. Immunoelectron microscopy confirms that the actin cytoskeleton is located under the inner membrane complex rather than in the sub‐alveolar space. In stage V gametocytes, the actin and microtubule cytoskeletons are reorganized in a coordinated fashion. The actin‐depolymerizing agent, cytochalasin D, depletes actin from the end of the gametocytes, whereas the actin‐stabilizing compound, jasplakinolide, induces formation of large bundles and prevents late‐stage disassembly of the actin cytoskeleton. Long‐term treatment with these compounds is associated with disruption of the normal mitochondrial organization and decreased gametocyte viability.  相似文献   

5.
The actin cytoskeleton is conserved in all eukaryotes, but its functions vary among different organisms. In oomycetes, the function of the actin cytoskeleton has received relatively little attention. We have performed a bioinformatics study and show that oomycete actin genes fall within a distinct clade that is divergent from plant, fungal and vertebrate actin genes. To obtain a better understanding of the functions of the actin cytoskeleton in hyphal growth of oomycetes, we studied the actin organization in Phytophthora infestans hyphae and the consequences of treatment with the actin depolymerising drug latrunculin B (latB). This revealed that latB treatment causes a concentration dependent inhibition of colony expansion and aberrant hyphal growth. The most obvious aberrations observed upon treatment with 0.1 μM latB were increased hyphal branching and irregular tube diameters whereas at higher concentrations latB (0.5 and 1 μM) tips of expanding hyphae changed into balloon-like shapes. This aberrant growth correlated with changes in the organization of the actin cytoskeleton. In untreated hyphae, staining with fluorescently tagged phalloidin revealed two populations of actin filaments: long, axially oriented actin filament cables and cortical actin filament plaques. Two hyphal subtypes were recognized, one containing only plaques and the other containing both cables and plaques. In the latter, some hyphae had an apical zone without actin filament plaques. Upon latB treatment, the proportion of hyphae without actin filament cables increased and there were more hyphae with a short apical zone without actin filament plaques. In general, actin filament plaques were more resilient against actin depolymerisation than actin filament cables. Besides disturbing hyphal growth and actin organization, actin depolymerisation also affected the positioning of nuclei. In the presence of latB, the distance between nuclei and the hyphal tip decreased, suggesting that the actin cytoskeleton plays a role in preventing the movement of nuclei towards the hyphal tip.  相似文献   

6.
We show that Arf3p, a member of the ADP ribosylation family, is involved in the organization of actin cables and cortical patches in Saccharomyces cerevisiae. Profilin-deficient cells (pfy1Delta) have severe growth defects and lack actin cables. Overexpression of ARF3 restores actin cables and corrects growth defects in these cells. Cells deficient for the cortical patch proteins Las17p and Vrp1p have growth defects and a random cortical patch distribution. Overexpression of ARF3 in las17Delta and in vrp1Delta cells partially corrects growth defects and restores the polarized distribution of cortical patches. The N-terminal glycine, a myristoylation site in Arf3p, is necessary for its suppressor activity. arf3Delta cells show a random budding pattern. Overexpression of BNI1, GEA2 or SYP1, three genes involved in actin cytoskeleton formation, restores the normal axial budding pattern of arf3Delta cells. BUD6 is a polarity gene and GEA2 is involved in retrograde transport and the organization of the actin cytoskeleton. We have identified genetic interactions between ARF3 and BUD6, and between ARF3 and GEA2. Both double mutant strains have actin cytoskeleton defects. Our results support a role for ARF3 in cell polarity and the organization of the actin cytoskeleton.  相似文献   

7.
The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F‐actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP‐ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase‐activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host–pathogen interactions.  相似文献   

8.
  • Microcystins are toxins produced by cyanobacteria, notorious for negatively affecting a wide range of living organisms, among which several plant species. Although microtubules are a well‐established target of microcystin toxicity, its effect on filamentous actin (F‐actin) in plant cells has not yet been studied.
  • Τhe effects of microcystin‐LR (MC‐LR) and an extract of a microcystin‐producing freshwater cyanobacterial strain (Microcystis flos‐aquae TAU‐MAC 1510) on the cytoskeleton (F‐actin and microtubules) of Oryza sativa (rice) root cells were studied with light, confocal, and transmission electron microscopy. Considering the role of F‐actin in endomembrane system distribution, the endoplasmic reticulum and the Golgi apparatus in extract‐treated cells were also examined.
  • F‐actin in both MC‐LR- and extract‐treated meristematic and differentiating root cells exhibited time‐dependent alterations, ranging from disorientation and bundling to the formation of ring‐like structures, eventually resulting in a collapse of the F‐actin network after longer treatments. Disorganization and eventual depolymerization of microtubules, as well as abnormal chromatin condensation were observed following treatment with the extract, effects which could be attributed to microcystins and other bioactive compounds. Moreover, cell cycle progression was inhibited in extract‐treated roots, specifically affecting the mitotic events. As a consequence of F‐actin network disorganization, endoplasmic reticulum elements appeared stacked and diminished, while Golgi dictyosomes appeared aggregated.
  • These results support that F‐actin is a prominent target of MC‐LR, both in pure form and as an extract ingredient. Endomembrane system alterations can also be attributed to the effects of cyanobacterial bioactive compounds (including microcystins) on the F‐actin cytoskeleton.
  相似文献   

9.
Tip growth is essential for land colonization by bryophytes, plant sexual reproduction and water and nutrient uptake. Because this specialized form of polarized cell growth requires both a dynamic actin cytoskeleton and active secretion, it has been proposed that the F‐actin‐associated motor myosin XI is essential for this process. Nevertheless, a spatial and temporal relationship between myosin XI and F‐actin during tip growth is not known in any plant cell. Here, we use the highly polarized cells of the moss Physcomitrella patens to show that myosin XI and F‐actin localize, in vivo, at the same apical domain and that both signals fluctuate. Surprisingly, phase analysis shows that increase in myosin XI anticipates that of F‐actin; in contrast, myosin XI levels at the tip fluctuate in identical phase with a vesicle marker. Pharmacological analysis using a low concentration of the actin polymerization inhibitor latrunculin B showed that the F‐actin at the tip can be significantly diminished while myosin XI remains elevated in this region, suggesting that a mechanism exists to cluster myosin XI‐associated structures at the cell's apex. In addition, this approach uncovered a mechanism for actin polymerization‐dependent motility in the moss cytoplasm, where myosin XI‐associated structures seem to anticipate and organize the actin polymerization machinery. From our results, we inferred a model where the interaction between myosin XI‐associated vesicular structures and F‐actin polymerization‐driven motility function at the cell's apex to maintain polarized cell growth. We hypothesize this is a general mechanism for the participation of myosin XI and F‐actin in tip growing cells.  相似文献   

10.
The actin cytoskeleton is a dynamic but well‐organized intracellular framework that is essential for proper functioning of eukaryotic cells. Here, we use the actin binding peptide Lifeact to investigate the in vivo actin cytoskeleton dynamics in the oomycete plant pathogen Phytophthora infestans. Lifeact–eGFP labelled thick and thin actin bundles and actin filament plaques allowing visualization of actin dynamics. All actin structures in the hyphae were cortically localized. In growing hyphae actin filament cables were axially oriented in the sub‐apical region whereas in the extreme apex in growing hyphae, waves of fine F‐actin polymerization were observed. Upon growth termination, actin filament plaques appeared in the hyphal tip. The distance between a hyphal tip and the first actin filament plaque correlated strongly with hyphal growth velocity. The actin filament plaques were nearly immobile with average lifetimes exceeding 1 h, relatively long when compared to the lifetime of actin patches known in other eukaryotes. Plaque assembly required ~30 s while disassembly was accomplished in ~10 s. Remarkably, plaque disassembly was not accompanied with internalization and the formation of endocytic vesicles. These findings suggest that the functions of actin plaques in oomycetes differ from those of actin patches present in other organisms.  相似文献   

11.
Although many previous reports have examined the function of prostaglandin E2 (PGE2) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin‐1 (Pfn‐1) and filamentous‐actin (F‐actin) in PGE2‐induced hMSC migration and proliferation and its related signal pathways. PGE2 (10?6 M) increased both cell migration and proliferation, and also increased E‐type prostaglandin receptor 2 (EP2) mRNA expression, β‐arrestin‐1 phosphorylation, and c‐Jun N‐terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)‐mediated knockdown of β‐arrestin‐1 and JNK (‐1, ‐2, ‐3) inhibited PGE2‐induced growth of hMSCs. PGE2 also activated Pfn‐1, which was blocked by JNK siRNA, and induced F‐actin level and organization. Downregulation of Pfn‐1 by siRNA decreased the level and organization of F‐actin. In addition, specific siRNA for TRIO and F‐actin‐binding protein (TRIOBP) reduced the PGE2‐induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE2 partially stimulates hMSCs migration and proliferation by interaction of Pfn‐1 and F‐actin via EP2 receptor‐dependent β‐arrestin‐1/JNK signaling pathways. J. Cell. Physiol. 226: 559–571, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
PtdIns‐4,5‐bisphosphate is a lipid messenger of eukaryotic cells that plays a critical role in processes such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels and nuclear signalling pathways. The enzymes responsible for the synthesis of PtdIns(4,5)P2 are phosphatidylinositol phosphate kinases (PIPKs). The moss Physcomitrella patens contains two PIPKs, PpPIPK1 and PpPIPK2. To study their physiological role, both genes were disrupted by targeted homologous recombination and as a result mutant plants with lower PtdIns(4,5)P2 levels were obtained. A strong phenotype for pipk1, but not for pipk2 single knockout lines, was obtained. The pipk1 knockout lines were impaired in rhizoid and caulonemal cell elongation, whereas pipk1‐2 double knockout lines showed dramatic defects in protonemal and gametophore morphology manifested by the absence of rapidly elongating caulonemal cells in the protonemal tissue, leafy gametophores with very short rhizoids, and loss of sporophyte production. pipk1 complemented by overexpression of PpPIPK1 fully restored the wild‐type phenotype whereas overexpression of the inactive PpPIPK1E885A did not. Overexpression of PpPIPK2 in the pipk1‐2 double knockout did not restore the wild‐type phenotype demonstrating that PpPIPK1 and PpPIPK2 are not functionally redundant. In vivo imaging of the cytoskeleton network revealed that the shortened caulonemal cells in the pipk1 mutants was the result of the absence of the apicobasal gradient of cortical F‐actin cables normally observed in wild‐type caulonemal cells. Our data indicate that both PpPIPKs play a crucial role in the development of the moss P. patens, and particularly in the regulation of tip growth.  相似文献   

13.
The aim of this study was to explore the effects of platelet‐rich plasma on gingipain‐caused changes in cell morphology and apoptosis of osteoblasts. Mouse osteoblasts MC3T3‐E1 cells were treated with gingipain extracts from Porphyromonas gingivalis in the presence or absence of platelet‐rich plasma. Apoptosis was detected with terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling staining. F‐actin was determined by phalloidin‐fluorescent staining and observed under confocal microscopy. Western blot analysis was used to detect integrin β1, F‐actin, and G‐actin protein expressions. A knocking down approach was used to determine the role of integrin β1. The platelet‐rich plasma protected osteoblasts from gingipain‐induced apoptosis in a dose‐dependent manner, accompanied by upregulation of integrin β1. Platelet‐rich plasma reversed the loss of F‐actin integrity and decrease of F‐actin/G‐actin ratio in osteoblasts in the presence of gingipains. By contrast, the effects of platelet‐rich plasma were abrogated by knockdown of integrin β1. The platelet‐rich plasma failed to reduce cell apoptosis and reorganize the cytoskeleton after knockdown of integrin β1. In conclusion, platelet‐rich plasma inhibits gingipain‐induced osteoblast apoptosis and actin cytoskeleton disruption by upregulating integrin β1 expression.  相似文献   

14.
Cell division, growth, and cytoplasmic organization require a dynamic actin cytoskeleton. The filamentous actin (F-actin) network is regulated by actin binding proteins that modulate actin dynamics. These actin binding proteins often have cooperative interactions. In particular, actin interacting protein 1 (AIP1) is capable of capping F-actin and enhancing the activity of the small actin modulating protein, actin depolymerising factor (ADF) in vitro. Here, we analyze the effect of the inducible expression of AIP1 RNAi in Arabidopsis plants to assess AIP1s role in vivo. In intercalary growing cells, the normal actin organization is disrupted, and thick bundles of actin appear in the cytoplasm. Moreover, in root hairs, there is the unusual appearance of actin cables ramifying the root hair tip. We suggest that the reduction in AIP1 results in a decrease in F-actin turnover and the promotion of actin bundling. This distortion of the actin cytoskeleton causes severe plant developmental abnormalities. After induction of the Arabidopis RNAi lines, the cells in the leaves, roots, and shoots fail to expand normally, and in the severest phenotypes, the plants die. Our data suggest that AIP1 is essential for the normal functioning of the actin cytoskeleton in plant development.  相似文献   

15.
Dynamic assembly and disassembly of the actin cytoskeleton has been implicated in the regulation of pollen germination and subsequent tube growth. It is widely accepted that actin filaments are arrayed into distinct structures within different regions of the pollen tube. Maintenance of the equilibrium between monomeric globular actin (G‐actin) and filamentous actin (F‐actin) is crucial for actin assembly and array construction, and the local concentration of G‐actin thus directly impacts actin assembly. The localization and dynamics of G‐actin in the pollen tube, however, remain to be determined conclusively. To address this question, we created a series of fusion proteins between green fluorescent protein (GFP) and the Arabidopsis reproductive actin ACT11. Expression of a fusion protein with GFP inserted after methionine at position 49 within the DNase I‐binding loop of ACT11 (GFPMet49–ACT11) rescued the phenotypes in act11 mutants. Consistent with the notion that the majority of actin is in its monomeric form, GFPMet49–ACT11 and GFP fusion proteins of four other reproductive actins generated with the same strategy do not obviously label filamentous structures. In further support of the functionality of these fusion proteins, we found that they can be incorporated into filamentous structures in jasplakinolide (Jasp)‐treated pollen tubes. Careful observations showed that G‐actin is distributed uniformly in the pollen tube and is rapidly redistributed via cytoplasmic streaming during pollen tube growth. Our study suggests that G‐actin is readily available in the cytoplasm to support continuous actin polymerization during rapid pollen tube growth.  相似文献   

16.
Reorganization of the host cell actin cytoskeleton is crucial during pathogen invasion. We established micropatterned cells as a standardized infection model for cell invasion to quantitatively study actin rearrangements triggered by Salmonella Typhimurium (S. Tm). Micropatterns of extracellular matrix proteins force cells to adopt a reproducible shape avoiding strong cell‐to‐cell variations, a major limitation in classical cell culture conditions. S. Tm induced F‐actin‐rich ruffles and invaded micropatterned cells similar to unconstrained cells. Yet, standardized conditions allowed fast and unbiased comparison of cellular changes triggered by the SipA and SopE bacterial effector proteins. Intensity measurements in defined regions revealed that the content of pre‐existing F‐actin remained unchanged during infection, suggesting that newly polymerized F‐actin in bacteria‐triggered ruffles originates from the G‐actin pool. Analysing bacterial target sites, we found that bacteria did not show any preferences for the local actin cytoskeleton specificities. Rather, invasion was constrained to a specific ‘cell height’, due to flagella‐mediated near‐surface swimming. We found that invasion sites were similar to bacterial binding sites, indicating that S. Tm can induce a permissive invasion site wherever it binds. As micropatterned cells can be infected by many different pathogens they represent a valuable new tool for quantitative analysis of host–pathogen interactions.  相似文献   

17.
Bacterial actin homologue MreB is required for cell shape maintenance in most non‐spherical bacteria, where it assembles into helical structures just underneath the cytoplasmic membrane. Proper assembly of the actin cytoskeleton requires RodZ, a conserved, bitopic membrane protein that colocalises to MreB and is essential for cell shape determination. Here, we present the first crystal structure of bacterial actin engaged with a natural partner and provide a clear functional significance of the interaction. We show that the cytoplasmic helix‐turn‐helix motif of Thermotoga maritima RodZ directly interacts with monomeric as well as filamentous MreB and present the crystal structure of the complex. In vitro and in vivo analyses of mutant T. maritima and Escherichia coli RodZ validate the structure and reveal the importance of the MreB–RodZ interaction in the ability of cells to propagate as rods. Furthermore, the results elucidate how the bacterial actin cytoskeleton might be anchored to the membrane to help constrain peptidoglycan synthesis in the periplasm.  相似文献   

18.
The NG2 chondroitin sulfate proteoglycan is a membrane-spanning molecule expressed by immature precursor cells in a variety of developing tissues. In tightly adherent cell lines with a flattened morphology, NG2 is organized on the cell surface in linear arrays that are highly co-localized with actin and myosin-containing stress fibers in the cytoskeleton. In contrast, microtubules and intermediate filaments in the cytoskeleton exhibit completely different patterns of organization, suggesting that NG2 may use microfilamentous stress fibers as a means of cytoskeletal anchorage. Consistent with this is the observation that cytochalasin D disrupts the organization of both stress fibers in the cytoskeleton and NG2 on the cell surface. Very similar linear cell surface arrays are also seen with three other cell surface molecules thought to interact with the actin cytoskeleton: the α5β1 integrin, the CD44 proteoglycan, and the L1 neuronal cell adhesion molecule. Since the cytoplasmic domains of these four molecules are dissimilar, it seems possible that cytoskeletal anchorage in each case may occur via different mechanisms. One indication of such differences can be seen in colchicine-treated cells which have lost their flattened morphology but still retain long actin-positive tendrils as remnants of the actin cytoskeleton. NG2 and α5β1 are associated with these tendrils while CD44 and L1 are not, suggesting that at least two subclasses of cell surface molecules exist which can interact with different subdomains of the actin cytoskeleton. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
The major virulence determinant of Legionella pneumophila is the type IVB secretion system (T4BSS), which delivers approximately 330 effector proteins into the host cell to modulate various cellular processes. However, the functions of most effector proteins remain unclear. WipA, an effector, was the first phosphotyrosine phosphatase of Legionella with unknown function. In this study, we found that WipA induced relatively strong growth defects in yeast in a phosphatase activity‐dependent manner. Phosphoproteomics data showed that WipA was likely involved into endocytosis, FcγR‐mediated phagocytosis, tight junction, and regulation of actin cytoskeleton pathways. Western blotting further confirmed WipA dephosphorylates several proteins associated with actin polymerisation, such as p‐N‐WASP, p‐ARP3, p‐ACK1, and p‐NCK1. Thus, we hypothesised that WipA targets N‐WASP/ARP2/3 complex signalling pathway, leading to disturbance of actin polymerisation. Indeed, we demonstrated that WipA inhibits host F‐actin polymerisation by reducing the G‐actin to F‐actin transition during L. penumophila infection. Furthermore, the intracellular proliferation of wipA/legK2 double mutant was significantly impaired at the late stage of infection, although the absence of WipA does not confer any further effect on actin polymerisation to the legK2 mutant. Collectively, this study provides unique insights into the WipA‐mediated regulation of host actin polymerisation and assists us to elucidate the pathogenic mechanisms of L. pnuemophila infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号