首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of muscle fatigue on the temporal neuromuscular control of the vastus medialis (VM) muscle were investigated in 19 young male subjects. The electromyogram (EMG) activities of VM and the force generation capacities of the quadriceps muscle were monitored before and after a fatigue protocol. In response to light signals, which were triggered randomly, the subjects made three maximal isometric knee extensions. This was then followed by the fatigue protocol which consisted of 30 isometric maximal voluntary contractions at a sequence of 5-s on and 5-s off. Immediately after the exercise to fatigue, the subjects performed another three maximal isometric contractions in response to the light signals. The effects of fatigue on the temporal neuromuscular control were then investigated by dividing the total reaction time (TRT) into premotor time (PMT) and electromechanical delay (EMD). The TRT was defined as the time interval between the light signal and the onset of the knee extension force. The PMT was defined as the time from the light signal to the onset of EMG activities of VM, and EMD as the time interval between onset of EMG activities to that of force generation. Following the contractions to fatigue there was a significant decrease in peak force (Fpeak, P = 0.016), an increase in the root mean square (rms)-EMG: Fpeak quotient (P = 0.001) but an insignificant change in the median frequency (P = 0.062) and rms-EMG (P = 0.119). Significant lengthening of mean EMD was found after the fatigue protocol [0.0396 (SD 0.009) vs. 0.0518 (SD 0.016) s P<0.001]. The lengthening of EMD in VM would affect the stabilizing effect of the patella during knee extension. The faster mean PMT [0.2445 (SD 0.093) vs. 0.2075 (SD 0.074) s, P = 0.042] following the fatigue protocol might have compensated for the lengthened EMD and contributed to the insignificant change in the mean TRT [0.284 (SD 0.09) vs. 0.259 (SD 0.073) s, P = 0.164]. This was probably related to the low level of fatigue (15% decrease in force) and the stereotyped nature of the action such that the effects of the fatigue on neuromuscular control were likely to have been attributable to peripheral processes.  相似文献   

2.
IntroductionIntramuscular pressure (IMP) is the fluid pressure generated within skeletal muscle and directly reflects individual muscle tension. The purpose of this study was to assess the development of force, IMP, and electromyography (EMG) in the tibialis anterior (TA) muscle during ramped isometric contractions and evaluate electromechanical delay (EMD).MethodsForce, EMG, and IMP were simultaneously measured during ramped isometric contractions in eight young, healthy human subjects. The EMD between the onset of force and EMG activity (Δt-EMG force) and the onset of IMP and EMG activity (Δt EMG-IMP) were calculated.ResultsA statistically significant difference (p < 0.05) was found between the mean force-EMG EMD (36 ± 31 ms) and the mean IMP-EMG EMD (3 ± 21 ms).ConclusionsIMP reflects changes in muscle tension due to the contractile muscle elements.  相似文献   

3.
Eight male sprinters were filmed running three maximal starts over 3 m on a long force platform. The subjects were divided into two groups (n = 4) according to the leg on which the electromyograph (EMG) electrodes were fixed. When in the set position one group had electrodes on the front leg (FLG) and the other group on the rear leg (RLG). The EMG activities of the gastrocnemius caput laterale muscle (GA), vastus lateralis muscle (VL), biceps femoris caput longum muscle (BF), rectus femoris muscle (RF) and gluteus maximus muscle (GM) were recorded telemetrically using surface electrodes. Total reaction time (TRT) was defined as the time from the gun signal until a horizontal force was produced with a value 10% above the base line. Pre-motor time was defined as the time from the gun signal until the onset of EMG activity and motor time (MT) as the time between the onset of EMG activity and that of force production. Reproducibility of the reaction time variables was satisfactory (r = 0.79-0.89; coefficient of variation = 8.8%-11.6%). The TRT was 0.121 s, SD 0.014 in FLG and 0.119 s, SD 0.011 in RLG. The MT ranged from 0.008 s, SD 0.009 (GM) to 0.057 s, SD 0.050 (GA) in FLG and from 0.018 s, SD 0.029 (GA) to 0.045 s, SD 0.009 (GM) in RLG. In some individual cases there were no MT values before horizontal force production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In order to investigate the relationship between metabolic state and myoelectrical activity in working muscle during short term intense exercise, eleven healthy males performed isokinetic knee extensions at an angular velocity of 180 deg X sec-1 for 30 and 60 s. The median frequency (MF) of the surface electromyogram (EMG) recorded from vastus lateralis was decreased while the time lag of torque production after the onset of electrical activity (EMD) was increased during exercise. These changes (MF and EMD) corresponded well to muscle lactate accumulation in the same muscle. Over the exercise period, the integrated EMG/knee extension peak torque ratio (E/T ratio) was increased, which indicated a decrease in the efficiency of electrical activity. It was concluded that the changes in the frequency components of the EMG and in the contractile property of the muscle during short term intense exercise correlated with lactate accumulation in the identical muscle, and that the decrease in efficiency of the electrical activity in the muscle suggested peripheral fatigue.  相似文献   

5.
The purpose of the present study was to investigate the influence of muscle fibre composition and stature on fractionated patellar reflex times in ten healthy untrained men (mean age: 23.3 years, SD 3.1; mass: 65.9 kg, SD 8.5; height: 172.3 cm, SD 5.3). Biopsies were taken from the right vastus lateralis muscle. Using staining for myofibrillar adenosine triphosphatase after pre-incubation at pH 4.3 and 4.6, muscle fibres were classified into slow twitch (ST), fast twitch, oxidative-glycolytic (FTa) and fast twitch, glycolytic (FTb) fibres. Total patellar reflex time (TRT) and its fractionated components--reflex latency (LAT) and reflex motor time (MT)--were obtained from the mean of ten trials in each subject whilst performing Jendrassik's maneuvre. The TRT, LAT and MT were 77.7 ms, SD 16.5, 23.4 ms, SD 1.3 and 54.2 ms, SD 16.3, respectively. The LAT was significantly correlated to the percentage number of ST (r = 0.758, P less than 0.05) and FTa fibres (r = -0.657, P less than 0.05), fast twitch:slow twitch ratio (r = -0.799, P less than 0.01) and to the height of the subjects (r = 0.901, P less than 0.001), whereas TRT and MT were not significantly correlated with either fibre types or the height of the subjects. From these results it can be concluded that the LAT during the patellar reflex is influenced by muscle fibre composition and the length of the sensory and/or motor nerve.  相似文献   

6.
The aim of this study was to investigate the concepts of electromyographic (EMG) threshold (EMGT) by integrated EMG (iEMG) signals and neuromuscular fatigue threshold (NMFT) concepts in trained male athletes. Nine competitive national-level male rowers (21.8 +/- 4.4 years; 186.2 +/- 4.6 cm; 79.6 +/- 8.4 kg) took part in this investigation. Subjects were asked to participate in the graded exercise test to volitional exhaustion and 500-, 1,000-, and 2,000-m all-out rowing ergometer tests on a rowing ergometer. During all tests, oxygen consumption parameters, average power, and iEMG of the musculus vastus lateralis were recorded. The second ventilatory threshold (248.9 +/- 26.67 W) and EMGT (258.89 +/- 27.13 W) were not significantly different but were significantly lower than the NMFT (302.25 +/- 45.10 W). During 1,000- and 2,000-m all-out distances, VO(2) increased during the first minute and then leveled on a plateau with a slight decrease at the end of the exercise. Vastus lateralis activity showed a slight increase during all distances that was accompanied by a remarkable increase towards the end of the distance. All measured threshold values were significantly correlated (r > 0.70; p < 0.05) to the rowing ergometer performance characteristics. It was concluded that EMGT is closely related to the aerobic-anaerobic transition phase, because NMFT represents the local fatigue accumulation in the muscle. NMFT indicates the performance capacity of the muscles; therefore, it helps coaches to better predict top athletes' performance.  相似文献   

7.
The purpose of this study was to determine the validity of using the electromyography (EMG) signal as a noninvasive method of estimating the lactate threshold (LT) power output in recreational cyclists. Using an electromagnetic bicycle ergometer and constant pedaling cadence of 80 rpm, 24 recreational cyclists performed an incremental exercise protocol that consisted of stepwise increases in power output of 25 W every 3 min until exhaustion. The EMG signal was recorded from the right vastus lateralis (VL) and right rectus femoris (RF) throughout the test. Blood samples were taken from the fingertip every 3 min. The LT was determined by examining the relation between the lactate concentration and the power output using a log-log transformation model. The root mean square (RMS) value from the EMG signal was calculated for every 1-second non-superimposing window. Sets of pairs of straight regression lines were plotted and the corresponding determination coefficients (R(2)) were calculated. The intersection point of the pair of lines with the highest R(2) product was chosen to represent the EMG threshold (EMGT). The results showed that the correlation coefficients (r) between EMGT and LT were significant (p < 0.01) and high for the VL (r = 0.826) and RF (r = 0.872). The RF and VL muscles showed similar behavior during the maximal incremental test and the EMGT and LT power output were equivalent for both muscles. The validity of using EMG to estimate the LT power output in recreational cyclists was confirmed.  相似文献   

8.
Electro-mechanical delay (EMD) values of the erector spinae muscle were obtained using a technique based on the cross-correlation between the force and the electromyogram (EMG). Seven subjects performed a series of 20 submaximal dynamic isometric contractions in a seated position at two frequencies (0.5 Hz and 1 Hz) to study the influence of the rate of force development on EMD. Mean EMD values of 125.7 (SD 28.1) ms (1 Hz) and 136.8 (SD 28.6) ms (0.5 Hz) were shown to differ significantly (P = 0.02). This finding supports the hypothesis that EMD is inversely related to the rate of force development and implies that the time to stretch the series elastic component is an important factor determining EMD. After performing a series of fatiguing contractions EMD did not differ significantly from the control value. Multiple regression analysis showed that maximal voluntary contraction force (MVC) and endurance time of the fatiguing exercise correlated significantly with EMD. The site from which the EMG signal was recorded had no significant influence on EMD. However, the coefficient of correlation between force and the EMG-signal differed significantly between electrode positions. The magnitude of the EMD values found emphasized the need to account for this delay when interpreting temporal patterns of activation of the muscles in, for example, lifting tasks.  相似文献   

9.
Animal studies have shown activation of upper airway muscles prior to inspiratory efforts of the diaphragm. To investigate this sequence of activation in humans, we measured the electromyogram (EMG) of the alae nasi (AN) and compared the time of onset of EMG to the onset of inspiratory airflow, during wakefulness, stage II or III sleep (3 subj), and CO2-induced hyperpnea (6 subj). During wakefulness, the interval between AN EMG and airflow was 92 +/- 34 ms (mean +/- SE). At a CO2 level of greater than or equal to 43 Torr, the AN EMG to airflow was 316 +/- 38 ms (P < 0.001). During CO2-induced hyperpnea, the AN EMG to airflow interval and AN EMG magnitude increased in direct proportion to CO2 levels and minute ventilation. During stages II and III of sleep, the interval between AN EMG and airflow increased when compared to wakefulness (P < 0.005). We conclude that a sequence of inspiratory muscle activation is present in humans and is more apparent during sleep and during CO2-induced hyperpnea than during wakefulness.  相似文献   

10.
Biofeedback was used to increase forearm-muscle tension. Feedback was delivered under continuous reinforcement (CRF), variable interval (VI), fixed interval (FI), variable ratio (VR), and fixed ratio (FR) schedules of reinforcement when college students increased their muscle tension (electromyograph, EMG) above a high threshold. There were three daily sessions of feedback, and Session 3 was immediately followed by a session without feedback (extinction). The CRF schedule resulted in the highest EMG, closely followed by the FR and VR schedules, and the lowest EMG scores were produced by the FI and VI schedules. Similarly, the CRF schedule resulted in the greatest amount of time-above-threshold and the VI and FI schedules produced the lowest time-above-threshold. The highest response rates were generated by the FR schedule, followed by the VR schedule. The CRF schedule produced relatively low response rates, comparable to the rates under the VI and FI schedules. Some of the data are consistent with the partial-reinforcement-extinction effect. The present data suggest that different schedules of feedback should be considered in muscle-strengthening contexts such as during the rehabilitation of muscles following brain damage or peripheral nervous-system injury.  相似文献   

11.
Phonomyogram (PMG, or acoustic myogram) is known to increase with force in isometric contractions. We investigated this relationship for dynamic contractions against different inertias. PMG and surface electromyogram (EMG) from biceps brachii and brachioradialis muscles were simultaneously recorded with the angular acceleration of elbow flexions. These were self-initiated movements (30 degrees) toward a fixed target and performed against two different inertias. PMG and EMG were integrated from the onset of the signal to the end of the acceleration phase. Phono- and electromechanical delays were also measured. For integrated EMG (iEMG), there was a linear relationship between integrated PMG (iPMG) and force, the slope of which did not depend on inertia. There was also a linear relationship between iPMG or iEMG and angular acceleration, with a higher slope for the highest inertia condition. There was also a family of linear relationships between iPMG or iEMG and angular acceleration, and their slopes depended on inertia. Measurements of the phono- and electromechanical delays showed that onset of PMG followed that of EMG but preceded onset of acceleration. It is suggested that PMG expresses tension of the underlying muscle contractile elements. Given the simplicity of the PMG method, we conclude that PMG allows convenient evaluation of muscle tension during human dynamic contraction.  相似文献   

12.
The present study examined respiratory muscle endurance and the magnitude of the sense of effort during inspiratory threshold loading following a dose of caffeine (600 mg) previously observed to increase diaphragm strength. Experiments were performed on 12 normal subjects. Respiratory muscle endurance at a given level of load was assessed from the time of exhaustion and from the time course of the change in the power spectrum (centroid frequency) of the diaphragm electromyogram (EMG). The intensity of the sense of effort during loaded breathing was evaluated using a category (Borg) scale. Increasingly severe loads were associated with more rapid onset of fatigue. At a given load, caffeine prolonged the time to exhaustion and decreased the rate of fall of the centroid frequency of the diaphragm EMG. Caffeine also decreased the sense of effort during loaded breathing in 9 of 11 subjects. Changes in respiratory muscle endurance after caffeine administration were not explained by changes in the pressure-time index of the respiratory muscles or the pattern of thoracoabdominal movement. We conclude that caffeine enhances inspiratory muscle endurance, while concomitantly reducing the sense of effort associated with fatiguing inspiratory muscle contractions.  相似文献   

13.
Rapid force production by isometric contraction of the knee extensor was examined in a wide range of force output for 12 healthy elderly (65-86 years) and 12 young (20-35 years) subjects. Time-course of tension development and duration of first burst EMG activities (AG-1) of the vastus medialis muscle were compared between both groups. Significant increase in the elderly as compared with the young was found in duration from the onset of the EMG to the rise of tension (TLT), but not in time from the rise to peak of force (FTmax), although FTmax tended to be longer in the elderly than the young at three different levels of force output. AG-1 duration was also prolonged in the elderly but the difference was not significant. The prolongation of TLT in the elderly suggests that spatio-temporal recruitments of the motor units and/or the percentage of fast twitch fibers decreases with aging.  相似文献   

14.
Delayed onset of muscle activity in abdominal muscles has been related to low back pain. To investigate this in larger clinical trials it would be beneficial if non-invasive and less cumbersome alternatives to intramuscular electromyography (EMG) were available. This study was designed to compare onset of muscle activity recorded by intramuscular EMG to onset of muscle deformations by ultrasound imaging. Muscle deformations were recorded by two ultrasound imaging modes at high time resolution (m-mode and tissue velocity) in separate sessions and compared to simultaneously recorded intramuscular EMG in three abdominal muscles. Tissue velocity imaging was converted to strain rate which measures deformation velocity gradients within small regions, giving information about the rate of local tissue shortening or lengthening along the beam axis. Onsets in transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) were recorded during rapid arm flexions in ten healthy subjects. During ultrasound m-mode recordings, the results showed that mean onsets by EMG were detected 7 ms (95% CI of mean difference; ±4 ms) and 2 ms (95% CI of mean difference; ±6 ms) before concurrent ultrasound m-mode detected onsets in TrA and OI, respectively. In contrast, OE onset was recorded 54 ms (95% CI of bias; ±16 ms) later by EMG compared to ultrasound m-mode. The discrepancy of ultrasound m-mode to accurately record onset in OE was practically corrected in the ultrasound-based strain rate recordings. However, this could only be applied on half of the subjects due to the angle dependency between the ultrasound beam and the direction of the contraction in strain rate recordings. The angle dependency needs to be further explored.  相似文献   

15.
This study tested two theories about the relationship between voluntary changes in muscle tension and pulmonary function in asthma. Kotses has theorized that decreased facial muscle tension decreases respiratory impedance via a hypothesized vagaltrigeminal reflex, but that muscle tension in other muscle groups has no such effect. Others have suggested that decreased thoracic muscle tension improves pulmonary function. Subjects were 19 volunteer asthmatic adults. They performed 3-minute cycles of deliberate muscle contraction, alternating two each for the shoulder and forehead muscles, followed by dominant forearm contraction. Surface EMG was measured from the frontalis and right trapezius areas. Airway impedance was measured by forced oscillation pneumography. Cardiac interbeat interval and respiratory sinus arrhythmia were measured to assess vagal tone. Frequency dependence of respiratory impedance increased during shoulder tension, giving some support to the theory relating thoracic tension to impairment in pulmonary function. Correlational analyses suggested a negative relationship between changes in cardiac interbeat interval and both frontalis muscle tension and decreased compliance of tissues in the airways. These findings are the opposite of those predicted by the vagal-trigeminal reflex theory.  相似文献   

16.
The purpose of the study was to quantify the influence of amplitude cancellation on the accuracy of detecting the onset of muscle activity based on an analysis of simulated surface electromyographic (EMG) signals. EMG activity of a generic lower limb muscle was simulated during the stance phase of human gait. Surface EMG signals were generated with and without amplitude cancellation by summing simulated motor unit potentials either before (cancellation EMG) or after (no-cancellation EMG) the potentials had been rectified. The two sets of EMG signals were compared at forces of 30% and 80% of maximum voluntary contraction (MVC) and with various low-pass filter cut-off frequencies. Onset time was determined both visually and by an algorithm that identified when the mean amplitude of the signal within a sliding window exceeded a specified standard deviation (SD) above the baseline mean. Onset error was greater for the no-cancellation conditions when determined automatically and by visual inspection. However, the differences in onset error between the two cancellation conditions appear to be clinically insignificant. Therefore, amplitude cancellation does not appear to limit the ability to detect the onset of muscle activity from the surface EMG.  相似文献   

17.
Factors that may confound comparisons between electromyographic (EMG) biofeedback training and its control conditions include feedback quality and experience of success. We investigated the usefulness of a control procedure designed to overcome these potential sources of confounding. The procedure consisted of training muscle tension stability. We used it as a control for frontal EMG relaxation training in children with asthma. To equate the groups for feedback quality and experience of success, we gave each child in the control condition audio feedback decreasing in pitch when muscle tension was at or near baseline levels, and feedback increasing in pitch when muscle tension was either substantially above or below baseline levels. Children in both groups were instructed to decrease the pitch of the tone. In comparison to children in the relaxation condition, the children in the control condition exhibited stable levels of muscle tension throughout eight training sessions. We concluded that feedback for stable muscle tension may be a useful control procedure for EMG biofeedback training whenever experimental and control procedures differ in either feedback quality of degree to which they permit subjects to experience success.This research was supported by NIH-Grant HL 27402. We are grateful to Paul Schnitter who constructed the EMG stability feedback device.  相似文献   

18.
Factors that may confound comparisons between electromyographic (EMG) biofeedback training and its control conditions include feedback quality and experience of success. We investigated the usefulness of a control procedure designed to overcome these potential sources of confounding. The procedure consisted of training muscle tension stability. We used it as a control for frontal EMG relaxation training in children with asthma. To equate the groups for feedback quality and experience of success, we gave each child in the control condition audio feedback decreasing in pitch when muscle tension was at or near baseline levels, and feedback increasing in pitch when muscle tension was either substantially above or below baseline levels. Children in both groups were instructed to decrease the pitch of the tone. In comparison to children in the relaxation condition, the children in the control condition exhibited stable levels of muscle tension throughout eight training sessions. We concluded that feedback for stable muscle tension may be a useful control procedure for EMG biofeedback training whenever experimental and control procedures differ in either feedback quality of degree to which they permit subjects to experience success.  相似文献   

19.
Electromechanical delay (EMD) is the time lag between muscle activation and force development. Using very high frame rate ultrasound, both electrochemical and mechanical processes involved in EMD can be assessed. Percutaneous electrical stimulations at submaximal intensity are often used to stimulate a specific target muscle. The aim of this study was to determine whether stimulus intensity alters the delay between stimulation and the onset of muscle fascicules motion (Dm), the onset of myotendinous junction motion (Dt), and force production (EMD). Ten participants underwent two electrically evoked contractions, with the probe maintained either the biceps brachii muscle belly or the distal myotendinous junction of the biceps brachii, for six stimulus intensities (30%, 50%, 70%, 90%, 110% and 130% of the lowest intensity inducing the maximal involuntary force production, Imax). In addition, inter-day reliability was tested in nine participants at both 70% and 90% of Imax. Dm, Dt and EMD were significantly longer (p < 0.001) at very low (30% and 50% of Imax) compared to higher intensities (70%, 90%, 110% and 130% of Imax). Inter-day reliability of EMD, Dm, and Dt was good (coefficient of variation ranged from 6.8% to 12.5%, i.e. SEM lower than 0.79 ms). These results indicate that the stimulus intensity needs to be standardized to perform longitudinal evaluation and/or to make between-subject comparisons.  相似文献   

20.
We examined the effects of fatigue on patellar tendon reflex responses in males and females. A spring-loaded reflex hammer elicited a standardized tendon tap with the knee positioned in an isokinetic dynamometer and flexed to 85 degrees. We recorded vastus lateralis activity (SEMG) and knee extension force production at the distal tibia (force transducer). Reflex trials were performed before and after (immediate, 2, 4, and 6 min) an isokinetic fatigue protocol to 50% MVC (90 degrees /s). For each event, pre-motor time (PMT), electromechanical delay (EMD), and total motor time (TMT) were obtained, as well as EMG amplitude (EMG(amp)), time to peak EMG (EMG(tpk)), peak force amplitude (F(amp)), time to peak force (F(tpk)), EMG:force ratio (E:F), and rate of force production (F(rate)=N/ms). TMT increased significantly in females following fatigue, while males showed no change. The increased TMT was due to an increased EMD with fatigue, while PMT was unaffected. EMG(amp) and F(amp) were somewhat diminished in females yet significantly augmented in males following fatigue, likely accounting for the differential changes in EMD noted. Results suggest males and females may respond differently to isokinetic fatigue, with males having a greater capacity to compensate for contraction force failure when responding to mechanical perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号