首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Li Z  Gong X  Joshi VH  Li M 《RNA (New York, N.Y.)》2005,11(5):567-577
Maturation of the tRNA 3' terminus is a complicated process in bacteria. Usually, it is initiated by an endonucleolytic cleavage carried out by RNase E and Z in different bacteria. In Escherichia coli, RNase E cleaves AU-rich sequences downstream of tRNA, producing processing intermediates with a few extra residues at the 3' end; these are then removed by exoribonuclease trimming to generate the mature 3' end. Here we show that essentially all E. coli tRNA precursors contain a potential RNase E cleavage site, the AU-rich sequence element (AUE), in the 3' trailer. This suggests that RNase E cleavage and exonucleolytic trimming is a general pathway for tRNA maturation in this organism. Remarkably, the AUE immediately downstream of each tRNA is selectively conserved in bacteria having RNase E and tRNA-specific exoribonucleases, suggesting that this pathway for tRNA processing is also commonly used in these bacteria. Two types of RNase E-like proteins are identified in actinobacteria and the alpha-subdivision of proteobacteria. The tRNA 3' proximal AUE is conserved in bacteria with only one type of E-like protein. Selective conservation of the AUE is usually not observed in bacteria without RNase E. These results demonstrate a novel example of co-evolution of RNA sequences with processing activities.  相似文献   

4.
Novel mechanisms for maturation of chloroplast transfer RNA precursors   总被引:21,自引:1,他引:20       下载免费PDF全文
Despite the prokaryotic origins of chloroplasts, a plant chloroplast tRNA precursor is processed in a homologous in vitro system by a pathway distinct from that observed in Escherichia coli, but identical to that utilized for maturation of nuclear pre-tRNAs. The mature tRNA 5' terminus is generated by the site-specific endonucleolytic cleavage of an RNase P (or P-type) activity. The 3' end is likewise produced by a single precise endonucleolytic cut at the 3' terminus of the encoded tRNA domain. This is the first complete structural characterization of an organellar tRNA processing system using a homologous substrate. In contrast to eubacterial RNase P, chloroplast RNase P does not appear to contain an RNA subunit. The chloroplast activity bands with bulk protein at 1.28 g/ml in CsCI density gradients, whereas E.coli RNase P bands as ribonucleoprotein at 1.73 g/ml. Chloroplast RNase P activity survives treatment with micrococcal nuclease (MN) at levels 10- to 100-fold higher than those required to totally inactivate the E.coli enzyme. The chloroplast system is sensitive to a suppression of tRNA processing, caused by binding of inactive MN to pre-tRNA substrate, which is readily overcome by addition of carrier RNA to the assay.  相似文献   

5.
6.
In contrast to Escherichia coli, where the 3' ends of tRNAs are primarily generated by exoribonucleases, maturation of the 3' end of tRNAs is catalysed by an endoribonuclease, known as RNase Z (or 3' tRNase), in many eukaryotic and archaeal systems. RNase Z cleaves tRNA precursors 3' to the discriminator base. Here we show that this activity, previously unsuspected in bacteria, is encoded by the yqjK gene of Bacillus subtilis. Decreased yqjK expression leads to an accumulation of a population of B.subtilis tRNAs in vivo, none of which have a CCA motif encoded in their genes, and YqjK cleaves tRNA precursors with the same specificity as plant RNase Z in vitro. We have thus renamed the gene rnz. A CCA motif downstream of the discriminator base inhibits RNase Z activity in vitro, with most of the inhibition due to the first C residue. Lastly, tRNAs with long 5' extensions are poor substrates for cleavage, suggesting that for some tRNAs, processing of the 5' end by RNase P may have to precede RNase Z cleavage.  相似文献   

7.
In this study, we have used various tRNA(Tyr)Su3 precursor (pSu3) derivatives that are processed less efficiently by RNase P to investigate if the 5' leader is a target for RNase E. We present data that suggest that RNase E cleaves the 5' leader of pSu3 both in vivo and in vitro. The site of cleavage in the 5' leader corresponds to the cleavage site for a previously identified endonuclease activity referred to as RNase P2/O. Thus, our findings suggest that RNase P2/O and RNase E activities are of the same origin. These data are in keeping with the suggestion that the structure of the 5' leader influences tRNA expression by affecting tRNA processing and indicate the involvement of RNase E in the regulation of cellular tRNA levels.  相似文献   

8.
T Nomura  A Ishihama 《The EMBO journal》1988,7(11):3539-3545
The leuX gene of Escherichia coli codes for a suppressor tRNA and forms a single gene operon containing its own promoter and Q-independent terminator. An analysis of the in vitro processing of leuX precursor revealed that the processing of the 5' end took place in a single-step reaction catalysed by RNase P while the 3' processing involved two successive reactions. The endonucleolytic cleavage activity of the 3' precursor sequence was found to copurify with RNase P. Heat inactivation of thermosensitive RNase P from two independent E. coli mutants abolished the cleavage activity of both the 5' and 3' ends. These results altogether suggest that RNase P carries the activity of 3' end cleavage as well as that of 5' processing. In the presence of Mg2+ alone, the leuX precursor was found to be self-cleaved at a site approximately 13 nt inside from the 5' end of mature tRNA. The self-cleaved precursor tRNA was no longer processed by the 3' endonuclease, suggesting that the 3' endonuclease recognizes a specific conformation of the precursor tRNA for action.  相似文献   

9.
10.
Processing pathway of Escherichia coli 16S precursor rRNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA.  相似文献   

11.
We have constructed a strain (CT1) that expresses RNase P conditionally with the aim to analyze the in vivo tRNA processing pathway and the biological role that RNase P plays in Synechocystis 6803. In this strain, the rnpB gene, coding for the RNA subunit of RNase P, has been placed under the control of the petJ gene promoter (P(petJ)), which is repressed by copper, cell growth, and accumulation of RNase P RNA is inhibited in CT1 after the addition of copper, indicating that the regulation by copper is maintained in the chimerical P(petJ)-rnpB gene and that RNase P is essential for growth in Synechocystis. We have analyzed several RNAs by Northern blot and primer extension in CT1. Upon addition of copper to the culture medium, precursors of the mature tRNAs are detected. Furthermore, our results indicate that there is a preferred order in the action of RNase P when it processes a dimeric tRNA precursor. The precursors detected are 3'-processed, indicating that 3' processing can occur before 5' processing by RNase P. The size of the precursors suggests that the terminal CCA sequence is already present before RNase P processing. We have also analyzed other potential RNase P substrates, such as the precursors of tmRNA and 4.5 S RNA. In both cases, accumulation of larger than mature size RNAs is observed after transferring the cells to a copper-containing medium.  相似文献   

12.
13.
Proline tRNA 3′-maturation in Escherichia coli occurs through a one-step RNase E endonucleolytic cleavage immediately after the CCA determinant. This processing pathway is distinct from the 3′-end maturation of the other tRNAs by avoiding the widespread use of 3′ → 5′ exonucleolytic processing, 3′-polyadenylation and subsequent degradation. Here, we show that the cytosine (C) at the mature 5′-terminus of the proK and proL tRNAs is required for both the RNase E cleavage immediately after the CCA determinant and their functionality. Thus, changing the C nucleotide at the mature 5′-terminus of the proL and proK tRNAs to the more common G nucleotide led to RNase E cleavages 1–4 nucleotides downstream of the CCA determinant. Furthermore, the 5′-modified mutant tRNAs required RNase T and RNase PH for their 3′-maturation and became substrates for polyadenylation and degradation. Strikingly, the aminoacylation of the 5′-modified proline tRNAs was blocked due to the change in the recognition element for prolyl-tRNA-synthetase. An analogous modification of the pheV 5′-mature terminus from G to C nucleotide did not support cell viability. This result provides additional support for the importance of first nucleotide of the mature tRNAs in their processing and functionality.  相似文献   

14.
15.
16.
Ordered processing of Escherichia coli 23S rRNA in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.  相似文献   

17.
In contrast to Escherichia coli, where all tRNAs have the CCA motif encoded by their genes, two classes of tRNA precursors exist in the Gram-positive bacterium Bacillus subtilis. Previous evidence had shown that ribonuclease Z (RNase Z) was responsible for the endonucleolytic maturation of the 3' end of those tRNAs lacking an encoded CCA motif, accounting for about one-third of its tRNAs. This suggested that a second pathway of tRNA maturation must exist for those precursors with an encoded CCA motif. In this paper, we examine the potential role of the four known exoribonucleases of B.subtilis, PNPase, RNase R, RNase PH and YhaM, in this alternative pathway. In the absence of RNase PH, precursors of CCA-containing tRNAs accumulate that are a few nucleotides longer than the mature tRNA species observed in wild-type strains or in the other single exonuclease mutants. Thus, RNase PH plays an important role in removing the last few nucleotides of the tRNA precursor in vivo. The presence of three or four exonuclease mutations in a single strain results in CCA-containing tRNA precursors of increasing size, suggesting that, as in E.coli, the exonucleolytic pathway consists of multiple redundant enzymes. Assays of purified RNase PH using in vitro-synthesized tRNA precursor substrates suggest that RNase PH is sensitive to the presence of a CCA motif. The division of labor between the endonucleolytic and exonucleolytic pathways observed in vivo can be explained by the inhibition of RNase Z by the CCA motif in CCA-containing tRNA precursors and by the inhibition of exonucleases by stable secondary structure in the 3' extensions of the majority of CCA-less tRNAs.  相似文献   

18.
Here, we report the first characterization and partial purification of an archaeal tRNA 3' processing activity, the RNase Z from Haloferax volcanii. The activity identified here is an endonuclease, which cleaves tRNA precursors 3' to the discriminator. Thus tRNA 3' processing in archaea resembles the eukaryotic 3' processing pathway. The archaeal RNase Z has a KCl optimum at 5mM, which is in contrast to the intracellular KCl concentration being as high as 4M KCl.The archaeal RNase Z does process 5' extended and intron-containing pretRNAs but with a much lower efficiency than 5' matured, intronless pretRNAs. At least in vitro there is thus no defined order for 5' and 3' processing and splicing. A heterologous precursor tRNA is cleaved efficiently by the archaeal RNase Z. Experiments with precursors containing mutated tRNAs revealed that removal of the anticodon arm reduces cleavage efficiency only slightly, while removal of D and T arm reduces processing effciency drastically, even down to complete inhibition. Comparison with its nuclear and mitochondrial homologs revealed that the substrate specificity of the archaeal RNase Z is narrower than that of the nuclear RNase Z but broader than that of the mitochondrial RNase Z.  相似文献   

19.
20.
Ziehler WA  Day JJ  Fierke CA  Engelke DR 《Biochemistry》2000,39(32):9909-9916
Eukaryotic transfer RNA precursors (pre-tRNAs) contain a 5' leader preceding the aminoacyl acceptor stem and a 3' trailer extending beyond this stem. An early step in pre-tRNA maturation is removal of the 5' leader by the endoribonuclease, RNase P. Extensive pairing between leader and trailer sequences has previously been demonstrated to block RNase P cleavage, suggesting that the 5' leader and 3' trailer sequences might need to be separated for the substrate to be recognized by the eukaryotic holoenzyme. To address whether the nuclear RNase P holoenzyme recognizes the 5' leader and 3' trailer sequences independently, interactions of RNase P with pre-tRNA(Tyr) containing either the 5' leader, the 3' trailer, or both were examined. Kinetic analysis revealed little effect of the 3' trailer or a long 5' leader on the catalytic rate (k(cat)) for cleavage using the various pre-tRNA derivatives. However, the presence of a 3' trailer that pairs with the 5' leader increases the K(m) of pre-tRNA slightly, in agreement with previous results. Similarly, competition studies demonstrate that removal of a complementary 3' trailer lowers the apparent K(I), consistent with the structure between these two sequences interfering with their interaction with the enzyme. Deletion of both the 5' and 3' extensions to give mature termini resulted in the least effective competitor. Further studies showed that the nuclear holoenzyme, but not the B. subtilis holoenzyme, had a high affinity for single-stranded RNA in the absence of attached tRNA structure. The data suggest that yeast nuclear RNase P contains a minimum of two binding sites involved in substrate recognition, one that interacts with tRNA and one that interacts with the 3' trailer. Furthermore, base pairing between the 5' leader and 3' trailer hinders recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号