首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the most common vehicles by which Escherichia coli O157:H7 may be introduced into crops is contaminated irrigation water. Water contamination is becoming more common in rural areas of the United States as a result of large animal operations, and up to 40% of tested drinking-water wells are contaminated with E. coli. In this study, 2 contrasting soil samples were inoculated with E. coli O157:H7 expressing green fluorescent protein through irrigation water. Real-time PCR and culture methods were used to quantify the fate of this pathogen in phyllosphere (leaf surface), rhizosphere (volume of soil tightly held by plant roots), and non-rhizosphere soils. A real-time PCR assay was designed with the eae gene of E. coli O157:H7. The probe was incorporated into real-time PCR containing DNA extracted from the phyllosphere, rhizosphere, and non-rhizosphere soils. The detection limit for E. coli O157:H7 quantification by real-time PCR was 1.2 x 10(3) in the rhizosphere, phyllosphere, and non-rhizosphere samples. E. coli O157:H7 concentrations were higher in the rhizosphere than in the non-rhizosphere soils and leaf surfaces, and persisted longer in clay soil. The persistence of E. coli O157:H7 in phyllosphere, rhizosphere, and non-rhizosphere soils over 45 days may play a significant part in the recontamination cycle of produce in the environment. Therefore, the rapidity of the real-time PCR assay may be a useful tool for quantification and monitoring of E. coli O157:H7 in irrigation water and on contaminated fresh produce.  相似文献   

2.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

3.
Aims: To develop a duplex real‐time PCR assay targeting enterohaemorrhagic Escherichia coli (EHEC) type III effector TccP/TccP2‐encoding genes which are pivotal to EHEC‐mediated actin cytoskeleton reorganization in human intestinal epithelial cells. Methods and Results: The specificity of the assay was demonstrated with DNA from EHEC reference strains and non‐E. coli bacterial species. The detection limit was determined as five tccP or tccP2 copies per reaction. The assay was then evaluated on a large collection of 526 E. coli strains of human, animal, food and environmental origins. The results showed that tccP was restricted to a limited number of serotypes (i.e. O5:H?, O55:H7, O125:H6 and O157:H7). The tccP2 gene was present in a higher number of serotypes including the five most frequent EHEC serotypes (i.e. O26:H11, O103:H2, O111:H8, O145:H28 and O157:H7), and a few other serotypes that caused human infections (i.e. O4:H?, O45:H2 and O55:H7). A minority of O26:H11 and O103:H2 strains however tested negative for tccP2, though it is not known whether the lack of tccP2 affected their pathogenic potential. Real‐time PCR analysis of 400 raw milk cheeses revealed the presence of tccP and/or tccP2 genes in 19·75% of the cheese enrichment suspensions. Conclusions: A highly specific and sensitive duplex real‐time PCR method was developed for rapid and simultaneous detection of tccP and tccP2. Unpasteurized dairy products may be contaminated with E. coli strains carrying tccP and/or tccP2. Significance and Impact of the Study: The developed real‐time PCR assay represents a valuable alternative to conventional PCR tests and should be useful for characterization of the virulome of pathogenic E. coli strains.  相似文献   

4.
Aims: The survival capability of pathogens like Escherichia coli O157:H7 in manure‐amended soil is considered to be an important factor for the likelihood of crop contamination. The aim of this study was to reveal the effects of the diversity and composition of soil bacterial community structure on the survival time (ttd) and stability (irregularity, defined as the intensity of irregular dynamic changes in a population over time) of an introduced E. coli O157:H7 gfp‐strain were investigated for 36 different soils by means of bacterial PCR‐DGGE fingerprints. Methods and Results: Bacterial PCR‐DGGE fingerprints made with DNA extracts from the different soils using bacterial 16S‐rRNA‐gene‐based primers were grouped by cluster analysis into two clusters consisting of six and 29 soils and one single soil at a cross‐correlation level of 16% among samples per cluster. Average irregularity values for E. coli O157:H7 survival in the same soils differed significantly between clusters (P = 0·05), whereas no significant difference was found for the corresponding average ttd values (P = 0·20). The irregularity was higher for cluster 1, which consisted primarily of soils that had received liquid manure and artificial fertilizer and had a significant higher bacterial diversity and evenness values (P < 0·001). Conclusions: Bacterial PCR‐DGGE fingerprints of 36 manure‐amended soils revealed two clusters which differed significantly in the stability (irregularity) of E. coli O157 decline. The cluster with the higher irregularity was characterized by higher bacterial diversity and evenness. Significance and Impact of the Study: The consequence of a high temporal irregularity is a lower accuracy of predictions of population behaviour, which results in higher levels of uncertainty associated with the estimates of model parameters when modelling the behaviour of E. coli O157:H7 in the framework of risk assessments. Soil community structure parameters like species diversity and evenness can be indicative for the reliability of predictive models describing the fate of pathogens in (agricultural) soil ecosystems.  相似文献   

5.
The survival of Escherichia coli O157:H7 in soils can contaminate vegetables, fruits, drinking water, etc. However, data on the impact of E. coli O157:H7 on soil microbial communities are limited. In this study, we monitored the changes in the indigenous microbial community by using the phospholipid fatty acid (PLFA) method to investigate the interaction of the soil microbial community with E. coli O157:H7 in soils. Simple correlation analysis showed that the survival of E. coli O157:H7 in the test soils was negatively correlated with the ratio of Gram-negative (G) to Gram-positive (G+) bacterial PLFAs (G/G+ ratio). In particular, levels of 14 PLFAs were negatively correlated with the survival time of E. coli O157:H7. The contents of actinomycetous and fungal PLFAs in the test soils declined significantly (P, <0.05) after 25 days of incubation with E. coli O157:H7. The G/G+ ratio declined slightly, while the ratio of bacterial to fungal PLFAs (B/F ratio) and the ratio of normal saturated PLFAs to monounsaturated PLFAs (S/M ratio) increased, after E. coli O157:H7 inoculation. Principal component analysis results further indicated that invasion by E. coli O157:H7 had some effects on the soil microbial community. Our data revealed that the toxicity of E. coli O157:H7 presents not only in its pathogenicity but also in its effect on soil microecology. Hence, close attention should be paid to the survival of E. coli O157:H7 and its potential for contaminating soils.  相似文献   

6.
Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 – 5.14) but slowly in neutral soils (pH, 6.51 – 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g−1) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.  相似文献   

7.
Aims: Greenhouse and field trials were conducted under different agronomic practices and inoculum doses of environmental Escherichia coli and attenuated E. coli O157:H7, to comparatively determine whether these factors influence their survival on leaves and within the rhizosphere. Methods and Results: Hydroponic conditions: E. coli spray‐inoculated at log 4 CFU ml?1 was recovered from leaf surfaces at a mean population of 1·6 log CFU g?1 at 15 days. E. coli O157:H7 sprayed at log 2 or 4 CFU ml?1 levelled off on spinach leaf surfaces at a mean average population of 1·4 log CFU g?1 after 14 days, regardless of initial dose. Quantitative recovery was inconsistent across leaf developmental age. Field conditions: Average populations of E. coli O157:H7 spray‐inoculated at log 1·45 or 3·4 CFU m?2 levelled off at log 1·2 CFU g?1 over a 14‐day period. Pathogen recovery from leaves was inconsistent when compared to regularly positive detection on basal shoot tissue. Pathogen recovery from soil was inconsistent among sampling locations. Moisture content varied up to 40% DW and was associated with 50% (P < 0·05) decrease in positive locations for E. coli O157:H7 but not for E. coli. Conclusions: Overall, similar populations of environmental E. coli and E. coli O157:H7 were recovered from plants despite differences in inoculum dose and agronomic conditions. Strain source had a significant impact on the quantitative level and duration of survival on leaves and in soil. Water availability appeared to be the determinant factor in survival of E. coli and E. coli O157:H7; however, E. coli showed greater environmental fitness. Significance and Impact of the Study: Persistence of surrogate, indicator E. coli and E. coli O157:H7, irrespective of variable growing conditions in spinach is predominantly limited by water availability, strain source and localization within the plant. These findings are anticipated to ultimately be adopted into routine and investigative pathogen testing protocols and mechanical harvest practices of spinach.  相似文献   

8.
Aims: Survival of Escherichia coli O157:H7 and nonpathogenic E. coli on spinach leaves and in organic soil while growing spinach in a growth chamber was investigated. Methods and Results: Spinach plants were maintained in the growth chamber at 20°C (14 h) and 18°C (10 h) settings at 60% relative humidity. Five separate inocula, each containing one strain of E. coli O157:H7 and one nonpathogenic E. coli isolate were applied to individual 4‐week‐old spinach plants (cultivar ‘Whale’) grown in sandy soil. Leaf and soil inocula consisted of 100 μl, in 5 μl droplets, on the upper side of leaves resulting in 6·5 log CFU plant?1 and 1 ml in soil, resulting in 6·5 log CFU 200 g?1 soil per plant. Four replicates of each plant shoot and soil sample per inoculum were analysed on day 1 and every 7 days for 28 days for E. coli O157:H7 and nonpathogenic E. coli (by MPN) and for heterotrophic plate counts (HPC). Escherichia coli O157:H7 was not detected on plant shoots after 7 days but did survive in soil for up to 28 days. Nonpathogenic E. coli survived up to 14 days on shoots and was detected at low concentrations for up to 28 days. In contrast, there were no significant differences in HPC from days 0 to 28 on plants, except one treatment on day 7. Conclusions: Escherichia coli O157:H7 persisted in soil for at least 28 days. Escherichia coli O157:H7 on spinach leaves survived for less than 14 days when co‐inoculated with nonpathogenic E. coli. There was no correlation between HPC and E. coli O157:H7 or nonpathogenic E. coli. Significance and Impact of the Study: The persistence of nonpathogenic E. coli isolates makes them possible candidates as surrogates for E. coli O157:H7 on spinach leaves in field trials.  相似文献   

9.
Aims: This study estimated the incidence of non‐O157 verocytotoxigenic Escherichia coli (VTEC) in farm pasture soils and investigated the survival of non‐O157 VTEC in clay and sandy loam soils. Methods and Results: Twenty farms were tested over a 12‐month period by sample enrichment in tryptone soya broth plus vancomycin, followed by PCR screening for the presence of vt1 and vt2 genes. Of the 600 soil samples, 162 (27%), across all farms, were found to contain vt1 and/or vt2 genes. The enrichment cultures from the 162 PCR‐positive samples were plated onto Chromocult tryptone bile X‐glucuronide agar (TBX), presumptive VTEC colonies recovered, confirmed as VTEC by PCR and serotyped. Samples of the two predominant soil types in Ireland (clay and sandy) were homogenized, characterized in terms of pH, boron, cobalt, copper, potassium, magnesium, manganese, phosphorus, zinc and organic matter content, inoculated with washed suspensions of eight non‐O157:H7 soil isolates and six bovine faecal isolates and stored at 10°C for up to 201 days. Inoculum survival rates were determined at regular intervals by recovering and plating soil samples on TBX. All inoculated non‐O157 serotypes had highest D‐values in the sandy loam soil with D‐values ranging from 50·26 to 75·60 days. The corresponding range in clay loam soils was 31·60–48·25 days. Conclusions: This study shows that non‐O157 VTEC occur widely and frequently in pasture soils and can persist in such environments for several months, with considerable opportunity for recycling through farm environments, and cattle, with clear potential for subsequent transmission into the human food chain. Significance and Impact of the Study: This is the first such study of non‐O157 VTEC in farm soils and found that these VTEC are frequent and persistent contaminants in farm soils. In light of recent epidemiological data, non‐O157 VTEC should be seen as an emerging risk to be controlled within the food chain.  相似文献   

10.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

11.
12.
Aims: To develop a real‐time PCR assay targeting the Escherichia coli flagellar antigen H21 for identification and surveillance of clinically important Shiga toxin‐producing E. coli (STEC) serotypes classified in seropathotype C. Methods and Results: The fliC allele of STEC O91:H21 strain B2F1 was amplified and sequenced. The nucleotide sequence obtained was compared with fliC genes of E. coli O157:H21, O8:H21 and O113:H21 strains. A pair of oligonucleotide primers and a TaqMan® minor groove binder probe specific for fliC‐H21 were designed and used in a 5′‐nuclease PCR assay. This method was evaluated using a panel of 138 diverse bacterial strains and was shown to be 100% specific for H21. PCR amplification of fliC‐H21 from one cell per reaction mixture was possible, and an initial inoculum of 10 STEC H21 colony‐forming units per 25 g of ground beef was detected after overnight enrichment. Conclusions: The PCR assay developed was found to be highly sensitive and specific for the identification and detection of E. coli H21 strains in ground beef. Significance and Impact of the Study: The real‐time PCR assay targeting the H21 flagellar antigen described here offers a valuable method for the rapid detection and molecular typing of pathogenic STEC H21 strains in food.  相似文献   

13.
Surface water and groundwater are continuously used as sources of drinking water in many metropolitan areas of the United States. The quality of water from these sources may be reduced due to increases in contaminants such as Escherichia coli from urban and agricultural runoffs. In this study, a multiplex fluorogenic PCR assay was used to quantify E. coli O157:H7 in soil, manure, cow and calf feces, and dairy wastewater in an artificial wetland. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7 in a single reaction. Primer specificity was confirmed with DNA from 33 E. coli O157:H7 and related strains with and without the three genes. A direct correlation was determined between the fluorescence threshold cycle (CT) and the starting quantity of E. coli O157:H7 DNA. A similar correlation was observed between the CT and number of CFU per milliliter used in the PCR assay. A detection limit of 7.9 × 10−5 pg of E. coli O157:H7 DNA ml−1 equivalent to approximately 6.4 × 103 CFU of E. coli O157:H7 ml−1 based on plate counts was determined. Quantification of E. coli O157:H7 in soil, manure, feces, and wastewater was possible when cell numbers were ≥3.5 × 104 CFU g−1. E. coli O157:H7 levels detected in wetland samples decreased by about 2 logs between wetland influents and effluents. The detection limit of the assay in soil was improved to less than 10 CFU g−1 with a 16-h enrichment. These results indicate that the developed PCR assay is suitable for quantitative determination of E. coli O157:H7 in environmental samples and represents a considerable advancement in pathogen quantification in different ecosystems.  相似文献   

14.
To investigate the potential transfer of Escherichia coli O157:H7 from contaminated manure to fresh produce, lettuce seedlings were transplanted into soil fertilized with bovine manure which had been inoculated with approximately 104 CFU g−1 E. coli O157:H7. The lettuce was grown for approximately 50 days in beds in climate-controlled rooms in a greenhouse. As the bacterium was not detected in the edible parts of the lettuce, the outer leaves of the lettuce, or the lettuce roots at harvest it was concluded that transmission of E. coli O157:H7 from contaminated soil to lettuce did not occur. The pathogen persisted in the soil for at least 8 weeks after fertilizing but was not detected after 12 weeks. Indigenous E. coli was detected only sporadically on the lettuce at harvest, and enterococci were not detected at all. The numbers of enterococci declined more rapidly than those of E. coli in the soil. Pseudomonas fluorescens, which inhibited growth of E. coli O157:H7 in vitro, was isolated from the rhizosphere.  相似文献   

15.
Soil microbial communities are often not resistant to the impact caused by microbial invasions, both in terms of structure and functionality, but it remains unclear whether these changes persist over time. Here, we used three strains of Escherichia coli O157:H7 (E. coli O157:H7), a species used for modelling bacterial invasions, to evaluate the resilience of the bacterial communities from four Chinese soils to invasion. The impact of E. coli O157:H7 strains on soil native communities was tracked for 120 days by analysing bacterial community composition as well as their metabolic potential. We showed that soil native communities were not resistant to invasion, as demonstrated by a decline in bacterial diversity and shifts in bacterial composition in all treatments. The resilience of native bacterial communities (diversity and composition) was inversely correlated with invader's persistence in soils (R2 = 0.487, p < 0.001). Microbial invasions also impacted the functionality of the soil communities (niche breadth and community niche), the degree of resilience being dependent on soil or native community diversity. Collectively, our results indicate that bacteria invasions can potentially leave a footprint in the structure and functionality of soil communities, indicating the need of assessing the legacy of introducing exotic species in soil environments.  相似文献   

16.
Aims: European starlings (Sturnus vulgaris) are an invasive species in the United States and are considered a nuisance pest to agriculture. The goal of this study was to determine the potential for these birds to be reservoirs and/or vectors for the human pathogen Escherichia coli O157:H7. Materials and Results: Under biosecurity confinement, starlings were challenged with various doses of E. coli O157:H7 to determine a minimum infectious dose, the magnitude and duration of pathogen shedding, and the potential of pathogen transmission among starlings and between starlings and cattle. Birds transiently excreted E. coli O157:H7 following low‐dose inoculation; however, exposure to greater than 105.5 colony‐forming units (CFUs) resulted in shedding for more than 3 days in 50% of the birds. Colonized birds typically excreted greater than 103 CFU g?1 of faeces, and the pathogen was detected for as long as 14 days postinoculation. Cohabitating E. coli O157:H7‐positive starlings with culture‐negative birds or 12‐week‐old calves resulted in intra‐ and interspecies pathogen transmission within 24 h. Likewise, E. coli O157:H7 was recovered from previously culture‐negative starlings following 24‐h cohabitation with calves shedding E. coli O157:H7. Conclusions: European starlings may be a suitable reservoir and vector of E. coli O157:H7. Significance and Impact of the Study: Given the duration and magnitude of E. coli O157:H7 shedding by European starlings, European starlings should be considered a public health hazard. Measures aimed at controlling environmental contamination with starling excrement, on the farm and in public venues, may decrease food‐producing animal and human exposure to this pathogen.  相似文献   

17.
Aims: The purposes of this study were to evaluate the efficacy of high pressure to inactivate Escherichia coli O157:H7 in ground beef at ambient and subzero treatment temperatures and to study the fate of surviving bacteria postprocess and during frozen storage. Methods and Results: Fresh ground beef was inoculated with a five‐strain cocktail of E. coli O157:H7 vacuum‐packaged, pressure‐treated at 400 MPa for 10 min at ?5 or 20°C and stored at ?20 or 4°C for 5–30 days. A 3‐log CFU g?1 reduction of E. coli O157:H7 in the initial inoculum of 1 × 106 CFU g?1 was observed immediately after pressure treatment at 20°C. During frozen storage, levels of E. coli O157:H7 declined to <1 × 102 CFU g?1 after 5 days. The physiological status of the surviving E. coli was affected by high pressure, sensitizing the cells to pH levels 3 and 4, bile salts at 5% and 10% and mild cooking temperatures of 55–65°C. Conclusions: High‐pressure processing (HPP) reduced E. coli O157:H7 in ground beef by 3 log CFU g?1 and caused substantial sublethal injury resulting in further log reductions of bacteria during frozen storage. Significance and Impact of the Study: HPP treatment of packaged ground beef has potential in the meat industry for postprocess control of pathogens such as E. coli O157:H7 with enhanced safety of the product.  相似文献   

18.
19.
Escherichia coli O157:H7 is an important pathogenic Bacterium that threatens human health. A convenient, sensitive and specific method for the E. coli O157:H7 detection is necessary. We developed two pairs of monoclonal antibodies through traditional hybridoma technology, one specifically against E. coli O157 antigen and the other specifically against E. coli H7 antigen. Using these two pairs of antibodies, we developed two rapid test kits to specifically detect E. coli O157 antigen and E. coli H7 antigen, respectively. The detection sensitivity for O157 positive E. coli is 1 × 103 CFU per ml and for H7 positive E. coli is 1 × 104 CFU per ml. Combining these two pairs of antibodies together, we developed a combo test strip that can specifically detect O157: H7, with a detection sensitivity of 1 × 104 CFU per ml, when two detection lines are visible to the naked eye. This is currently the only rapid detection reagent that specifically detects O157: H7 by simultaneously detecting O157 antigen and H7 antigens of E. coli. Our product has advantages of simplicity and precision, and can be a very useful on-site inspection tool for accurate and rapid detection of E. coli O157:H7 infection.  相似文献   

20.
Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation and attachment to cut and intact fresh produce surfaces. Methods and Results: Five Escherichia coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation and attachment to intact and cut fresh produce (cabbage, iceberg lettuce and Romaine lettuce) leaves. Biofilm formation was stronger when E. coli O157:H7 were grown in diluted tryptic soy broth (1 : 10). In general, strong curli‐expressing E. coli O157:H7 strains 4406 and 4407 were more hydrophobic and attached to cabbage and iceberg lettuce surfaces at significantly higher numbers than other weak curli‐expressing strains. Overall, E. coli O157:H7 populations attached to cabbage and lettuce (iceberg and Romaine) surfaces were similar (P > 0·05), indicating produce surfaces did not affect (P < 0·05) bacterial attachment. All E. coli O157:H7 strains attached rapidly on intact and cut produce surfaces. Escherichia coli O157:H7 attached preferentially to cut surfaces of all produce types; however, the difference between E. coli O157:H7 populations attached to intact and cut surfaces was not significant (P > 0·05) in most cases. Escherichia coli O157:H7 attachment and attachment strength (SR) to intact and cut produce surfaces increased with time. Conclusions: Curli‐producing E. coli O157:H7 strains attach at higher numbers to produce surfaces. Increased attachment of E. coli O157:H7 on cut surfaces emphasizes the need for an effective produce wash to kill E. coli O157:H7 on produce. Significance and Impact of the Study: Understanding the attachment mechanisms of E. coli O157:H7 to produce surfaces will aid in developing new intervention strategies to prevent produce outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号