首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents results of measurements of neutron emission generated in the constriction of a fast Z-pinch at the S-300 facility (2 MA, 100 ns). An increased energy concentration was achieved by using a combined load the central part of which was a microporous deuterated polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.5 mm. The neck was placed between two 5-mm-diameter agar-agar cylinders. The characteristics of neutron emission in two axial and two radial directions were measured by the time-of-flight method. The neutron spectrum was recovered from the measured neutron signals by the Monte Carlo method. In all experiments, the spatiotemporal characteristics of plasma in the Z-pinch constriction were measured by means of the diagnostic complex of the S-300 facility, which includes frame photography in the optical, VUV, and soft X-ray (SXR) spectral regions; optical streak imaging; SXR detection; and time-integrated SXR photography. The formation of hot dense plasma in the Z-pinch constriction was accompanied by the generation of hard X-ray (with photon energies E > 30 keV), SXR (with photon energies E > 1 keV and duration of 2–4 ns), and neutron emission. Anisotropy of the neutron energy distribution in the axial direction was revealed. The mean neutron energies measured in four directions at angles of 0° (above the anode), 90°, 180° (under the cathode), and 270° with respect to the load axis were found to be of 2.1 ± 0.1, 2.5 ± 0.1, 2.6 ± 0.2, and 2.4 ± 0.1 MeV, respectively. For a 1-mm-diameter neck, the maximum integral neutron yield was 6 × 109 neutrons. The anisotropy of neutron emission for a Z-pinch with a power-law distribution of high-energy ions is calculated.  相似文献   

2.
Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200–300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3–4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200–400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 1010 neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.  相似文献   

3.
Results are presented from Z-pinch experiments performed in the S-300 facility (Kurchatov Institute) at a maximum current of 2 MA and current rise time of 100 ns. The Z-pinch load was a 1-cm-long 1-cmdiameter cylindrical array made of 40 tungsten wires with a total mass of 160 μg, at the axis of which a 100-μm-diameter (CD2) n deuterated fiber was installed. Hard X-ray and neutron signals were recorded using five scintillation detectors oriented in one radial and two axial directions. The maximum neutron yield from the DD reaction reached 3 × 109 neutrons per shot. The average neutron energy was determined from time-of-flight measurements and Monte Carlo simulations under the assumption that the neutron emission time was independent of the neutron energy. The average neutron energy in different experiments was found to vary within the range 2.5–2.7 MeV. The fact that the average neutron energy was higher than 2.45 MeV (the energy corresponding to the DD reaction) is attributed to the beam-target collisional mechanism for the acceleration of deuterons to 100–500 keV.  相似文献   

4.
Results are presented from experimental studies of the parameters of an X-pinch-based neutron source made of 70- to 80-μm-diameter deuterated polyethylene fibers. At currents of up to 1.7 MA and a current rise time of ~150 ns, hot plasma spots were observed in the fiber crossing region. The formation of hot spots was accompanied by the generation of short soft X-ray pulses with a duration of 2–4 ns, as well as by neutron emission. The neutron energy was measured using the time-of-flight technique in four directions, at 0°, 90°, 180°, and 270° with respect to the load axis. The mean energy of the neutrons emitted along the axis towards the anode and cathode was found to be 2.0 ± 0.2 and 2.6 ± 0.1 MeV, respectively, and that of neutrons emitted in two opposite directions along the radius, 2.5 ± 0.1 and 2.4 ± 0.1 MeV. The maximum neutron yield at a current amplitude of 1.6 MA was of 1010 neutrons per shot.  相似文献   

5.
Results are presented from experimental studies of the plasma formation dynamics in a Z-pinch produced from a cylindrical microporous agar-agar load. The experiments were performed on the S-300 facility at a current of 2 MA and current rise time of 100 ns. To enhance the energy concentration, a deuterated polyethylene neck with a mass density of 50–75 μg/cm3 and diameter of 1–2 mm was made in the central part of the load. The spatiotemporal characteristics of the Z-pinch were studied using an optical streak camera and fast frame photography in the optical and soft X-ray spectral ranges. X-ray emission was detected using semiconductor and vacuum diodes, and neutron emission was studied by means of the time-of-flight method. It is found that, in the course of continuous plasma production, hot spots with a diameter of 100 μm form in the pinch plasma. The hot spots emit short soft X-ray pulses with a duration of 2–4 ns, as well as neutron pulses with an average neutron energy of about 2.45 MeV. The maximum neutron yield was found to be 4.5 × 109 neutrons per shot. The scenario of hot spot formation is adequately described by two-dimensional MHD simulations.  相似文献   

6.
The development of a preformed constriction in cylindrical agar-agar loads at currents of up to 3 MA is studied experimentally. The loads 3–5 mm in diameter have a mass density of 0.1 g/cm3 and are filled with different materials. Due to the implosion of the constriction to a minimum size of 40–70 μm, a hot dense plasma (with the electron density n e=1022 cm−3, electron temperature T e=0.8–1.5 keV, and ion temperature T i=3–12 keV) is produced. It is found that the ion temperature substantially exceeds the electron temperature. The lifetime of the high-temperature plasma determined from the FWHM of a soft X radiation (SXR) pulse is shorter than 5 ns, the radiation power of photons with energies of ≥1 keV is higher than 0.5×1010 W, and their total energy attains 50 J. High-speed photography in the VUV, SXR, and optical spectral regions indicates the protracted generation of the high-temperature plasma. Calculations by the two-dimensional ideal MHD model of the Z-pinch show that the most important consequence of the protracted plasma generation in the constriction region is that the current is intercepted by a freshly produced plasma. In the course of plasma generation, the current near the axis inside the region of radius 50 μm is at most one-half of the total current. After the plasma generation comes to an end, almost the entire current is concentrated in this region for several nanoseconds; this process is accompanied by a sharp increase in the plasma temperature. __________ Translated from Fizika Plazmy, Vol. 27, No. 12, 2001, pp. 1101–1110. Original Russian Text Copyright ? 2001 by Bakshaev, Blinov, Vikhrev, Gordeev, Dan’ko, Korolev, Medovshchikov, Nedoseev, Smirnova, Tumanov, Chernenko, Shashkov.  相似文献   

7.
The implosion dynamics of a condensed Z-pinch at load currents of up to 3.5 MA and a current rise time of 100 ns was studied experimentally at the Angara-5-1 facility. To increase the energy density, 1- to 3-mm-diameter cylinders made of a deuterated polyethylene?agar-agar mixture or microporous deuterated polyethylene with a mass density of 0.03–0.5 g/cm3 were installed in the central region of the loads. The plasma spatiotemporal characteristics were studied using the diagnostic complex of the Angara-5-1 facility, including electron-optical streak and frame imaging, time-integrated X-ray imaging, soft X-ray (SXR) measurements, and vacuum UV spectroscopy. Most information on the plasma dynamics was obtained using a ten-frame X-ray camera (Е > 100 eV) with an exposure of 4 ns. SXR pulses were recorded using photoemissive vacuum X-ray detectors. The energy characteristics of neutron emission were measured using the time-offlight method with the help of scintillation detectors arranged along and across the pinch axis. The neutron yield was measured by activation detectors. The experimental results indicate that the plasma dynamics depends weakly on the load density. As a rule, two stages of plasma implosion were observed. The formation of hot plasma spots in the initial stage of plasma expansion from the pinch axis was accompanied by short pulses of SXR and neutron emission. The neutron yield reached (0.4–3) × 1010 neutrons/shot and was almost independent of the load density due to specific features of Z-pinch dynamics.  相似文献   

8.
Results are presented from experiments on the X-ray backlighting of the axial region of an imploding high-current multiwire liner. Backlighting was performed with the use of an X-pinch serving as a source of soft X-ray emission, which was recorded by pin diodes. The use of several filters with different passbands in front of the pin diodes allowed the interpretation of the results of measurements in experiments with cascade composite liners. The sensitivity of the diagnostics was ≈125 µg/cm2 for a plasma of high-Z elements (W) and ≈220 µg/cm2 for a plasma of low-Z elements (C, O, N) at a photon energy of the probing radiation of 1.0–1.5 keV. An advantage of the method is its high time resolution (≈1 ns) and the possibility of the separation in time of the emission bursts from Z-and X-pinches on the liner axis. The method does not impose restrictions on the pulse duration of the backlighting radiation source.  相似文献   

9.
Results are presented from experimental studies of the neutron emission generated in the collision of deuterium plasma flows produced in discharges in crossed E × H fields and propagating in opposite directions in a neutral gas across an external magnetic field. It is shown that the interaction of oppositely propagating deuterium plasma flows gives rise to the generation of soft X-ray emission and neutron emission from the dd reaction (dd3He + n) and is accompanied by an almost complete depolarization of the flows and rapid variations in the magnetic field (at a rate of ~1011 G/s). The measurements were performed at energies and velocities of the flows of up to 600 J and 3.5 × 107 cm/s, respectively. The plasma density in each flow was ~1015 cm?3. The upper estimates for the astrophysical S factor and the effective cross sections of the dd reaction obtained from our measurements are compared to theoretical calculations and to the results of experiments performed in the MIG high-current accelerator (Institute of High-Current Electronics, Russian Academy of Sciences, Tomsk).  相似文献   

10.
Results are presented from experimental studies of the correlation between X-ray and neutron emissions generated in the implosion of a deuteron plasma shell onto an Al wire. The experiments were carried out on the PF-1000 facility at currents of 1.5–1.8 MA. An Al wire 80 μm in diameter and 7–9 cm in length was placed at the end of the inner electrode. During the implosion of the plasma shell, Al K-shell X-rays were first emitted at the dip of the current derivative. After the X-ray pulse, a relatively stable corona with a diameter of 2–3 mm and lifetime of a few hundred nanoseconds formed around the wire. The presence of the wire did not considerably reduce the total neutron yield (at most 1011 neutrons per shot) in comparison to discharges without a wire. As a rule, the intensity of neutron emission was maximal a few tens of nanoseconds after the peak of X-ray emission. A detailed comparison of two shots with low and high neutron yields have shown that the neutron yield depends on the configuration and dynamics of the discharge. The possible influence of the self-generated axial component of the magnetic field on the development of the plasma focus and the acceleration of fast deuterons is discussed.  相似文献   

11.
Results are presented from experimental studies of discharge instabilities and the energy and temporal characteristics of a vacuum-diode X-ray source with a laser plasma cathode over a wide range of energies, intensities, and durations of the plasma-forming laser pulse. It is experimentally shown that the vacuum-discharge dynamics and radiation processes in different discharge stages substantially depend on the parameters of the laser radiation. The shortest recorded pulse duration (10 ns) of Ti K-line radiation (4.5 keV) with a total photon number of 1011 is achieved when the laser plasma cathode is produced by a laser pulse with a duration of 27 ps and an intensity of 1013 W/cm2. It is found that the contrast of characteristic emission against the bremsstrahlung background is maximum when discharge instabilities are suppressed and the accelerating voltage is three to four times higher than the threshold voltage for line excitation.  相似文献   

12.
Arrangement and results of experiments on the excitation of the (E m = 93.125 keV, J p = 7/2+, T 1/2 = 44.3 s) and (E m = 88.034 keV, J p = 7/2+, T 1/2 = 39.6 s) isomeric states of Ag107 and Ag109 nuclei under the action of X-ray emission in a hot (T e ∼0.5 keV) dense plasma produced by a laser pulse with the energy ∼9 J, intensity ∼1.2 × 1018 W/cm2, and duration 0.82 ps on the SOKOL-P facility are described. The experimentally determined half-life of the isomeric states agrees satisfactorily with the half-life of the Ag107m and Ag109m isomers, and their number N m ∼ 6.9 × 104 agrees with the qualitative estimate N m ∼ 2.8 × 104, obtained within the refined model of the physical processes in laser plasma.  相似文献   

13.
Results are presented from experiments on the laser generation of X-ray radiation at the wavelength λ=469 ? (ε=26.4 eV) on the 3p(J=0)−3s(J=1) transition of Ne-like Ar ions. Experiments were carried out on the SIGNAL electrophysical facility with a 3.1-mm-diameter 157-mm-long Al2O3 ceramic capillary filled with argon at a pressure of 0.2–1.0 Torr. The discharge current amplitude was I ∼ 25–40 kA, the current rise rate being dI/dt ∼ 1012 A/s. By a vacuum X-ray diode tuned to detect X-ray photons with energies in the range 10–40 eV, laser pulses with a duration of t 1 ∼ 1 ns and maximum energy of E 1,max ∼ 1 μJ were recorded. The pulses were generated 35 ns after the discharge current was switched on. The line spectra in the wavelength range of 150–500 ? showed the bright λ=469 ? line. The angular divergence of the generated X-ray laser beam was estimated to be Δϑ ∼ 2 mrad. Original Russian Text ? O.N. Gilev, V.I. Afonin, V.I. Ostashev, V.Yu. Politov, A.M. Gafarov, A.L. Zapysov, A.V. Andriyash, é.P. Magda, L.N. Shamraev, A.A. Safronov, A.V. Komissarov, N.A. Khavronin, N.A. Pkhaĭko, L.V. Antonova, L.N. Shushlebin, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 2, pp. 160–165.  相似文献   

14.
Pulse-periodic corona discharge in atmospheric air excited by applying a voltage pulse with a subnanosecond or microsecond rise time to a point electrode is studied experimentally. It is shown that, at a voltage rise rate of dU/dt ~1014 V/s, positive and negative ball-shaped streamers with a front velocity of ≥2 mm/ns form near the point electrode. As dU/dt is reduced to 1010?1011 V/s, the streamer shape changes and becomes close to cylindrical. The propagation velocity of cylindrical streamers is found to be ~0.1 mm/ns at dU/dt ~ 2 × 1010 V/s. It is shown that the propagation direction of a cylindrical streamer can be changed by tilting the point electrode, on the axis of which the electric field strength reaches its maximum value. It is established that, for the negative polarity of the point electrode and a microsecond rise time of the voltage pulse, a higher voltage is required to form a cylindrical streamer than for the positive polarity of the point electrode.  相似文献   

15.
The anisotropy of the yield and energy of neutrons generated in a small-size plasma focus chamber with a total neutron yield of about 4 × 109 DD neutrons per shot was investigated experimentally. The neutrons were recorded using scintillation detectors on a 3-m-long flight base. The measurements were performed at the angles 0° and 90° with respect to the chamber axis. The maximum neutron energy measured by the time-of-flight method at the angles 0° and 90° was found to be 2.8 and 2.5 MeV, respectively. The measured anisotropy of the neutron yield was in the range 1.15–1.88. The integral DD neutron yield of the source was measured using the activation method (by activating silver isotopes). It is found that the neutron yield and the yield anisotropy depend linearly on the discharge current jump ΔI at the instant of neutron generation.  相似文献   

16.
In the previous experiments on ECR heating of a low-density plasma with n e =(0.3?0.5)×1019 m?3 in the L-2M stellarator, the electron temperature profile measured from the intensity of electron cyclotron emission was found to be asymmetric about the magnetic axis and the electron temperature measured by this diagnostics turned out to be higher than that expected from diamagnetic measurements. To find out the character of distortion of the electron energy distribution function, the soft X-ray spectrum was measured in regimes with large values of the specific heating power η (1.5 MW per 1019 particles). Under these conditions, the X-ray spectrum plotted on a semilogarithmic scale has no linear segments in the photon energy range from 1.5 to 12 keV. This indicates that the electron distribution function is non-Maxwellian over the entire energy range under study.  相似文献   

17.
Results from preliminary experimental research of neutron emission generated by a spherical plasma focus chamber filled with an equal-component deuterium-tritium mixture are presented. At a maximum current amplitude in the discharge chamber of ~1.5 MA, neutron pulses with a full width at half-maximum of 75–80 ns and an integral yield of ~1.3 × 1013 DT neutrons have been recorded.  相似文献   

18.
Membranes were prepared from fresh, washed human erythrocytes by hemolysis and washing with 5 mm sodium phosphate buffer (pH 7.4). The mean residue ellipticity, [θ], of erythrocyte membrane circular dichroism was altered by prostaglandin E1 or prostaglandin F at 37 °C when observed from 250 nm to 190 nm. The decrease in negativity of [θ] with 10?6m prostaglandin E1 was 12.7% at 222 nm and 17.7% at 208 nm, and with 10?6m prostaglandin F 22.5% and 34.2%, respectively (P < 0.01). Similar changes in [θ] were observed at lower concentrations of prostaglandins. No strict relationship between amount of change of [θ] and prostaglandin concentrations of 3 × 10?5m to 3 × 10?12m was evident. A persistent alteration of [θ] with prostaglandin was observed at 37 °C. Transient change of [θ] occurred at 25 °C with prostaglandin. No change of [θ] was observed at 15 or 20 °C. Buffer or palmitic acid were without effect on membrane [θ]. Phosphatidyl inositol or methyl arachidonate caused an increase in negativity of membrane spectra. The observed alterations of membrane [θ] did not arise from changes in light scattering as the OD700–OD200 of membranes was not changed by prostaglandin. Effects of prostaglandin were not dependent on light path length. The prostaglandin E1 antagonist, 7-oxa-13-prostynoic acid, at 10?7m produced no change of [θ] of membrane spectra and prevented the otherwise demonstrable effects of 10?10m prostaglandin E1 on [θ]. The decrease in negativity of [θ] at 222 nm is indicative of a decrease in ellipticity of membrane protein. These studies suggest that prostaglandins may act by inducing a conformational change in membrane protein.  相似文献   

19.
In measuring the charge and energy spectra of the ions of a single-element laser plasma, in addition to thermal ions, fast multicharged ions are recorded that are accelerated by the electric field of laser radiation in the region of the critical plasma density. The charge and energy spectra of Co ions with the charge numbers z=1–3 are measured at laser intensities of q=5×1011–1012 W/cm2. The energy spectra of these ions are broad and are located on the high-energy side (z max=3, E>5.0 keV) with respect to the thermal ions (z max=9, E<4.0 keV). The increase in q to 1014 W/cm2 results in an increase in the charge number of both thermal and fast ions.  相似文献   

20.
Mark A. Jensen  Philip J. Elving 《BBA》1984,764(3):310-315
The rate constant, kd, for the dimerization of the free radical (NAD·), produced on the initial one-electron reduction of NAD+, was measured by double potential-step chronoamperometry, fast-scan cyclic voltammetry (cathodic-anodic peak current ratio) and slow-scan cyclic voltammetry (peak potential shift) for a medium in which neither NAD+ nor its reduction products are adsorbed at the solution/electrode interface. All three methods give concordant values of kd (approx. 3·107 M?1·s?1), which are in reasonable accord with the values determined by pulse radiolysis but are considerably greater than values previously determined electrochemically. For the NAD+/NAD· couple, the heterogeneous rate constant (ks,h) exceeds 1 cm·s?1 at 25°C and the formal potential (E0c) vs. sce is ? 1.155 V at 25°C and ? 1.149 V at 1°C at pH 9.1, with an uncertainty of about ±0.005 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号