共查询到20条相似文献,搜索用时 10 毫秒
1.
The effect of leaf temperature on stomatal conductance and net CO2 uptake was studied on French bean (Phaseolus vulgaris L.) using either dehydrated attached leaves (25–40% water deficit) or cut leaves supplied with 10–4 M abscisic acid (ABA) solution to the transpiration stream. Decreasing leaf temperature caused stomatal opening and increased net CO2 uptake (which was close to zero at around 25° C) to a level identical to that of control leaves (without water deficit) at around 15° C. (i) The ABA effect on stomatal closure was modulated by temperature and, presumably, ABA is at least partly responsible for stomatal closure of french bean submitted to a drought stress. (ii) For leaf temperatures lower than 15° C, net CO2 uptake was no longer limited by water deficit even on very dehydrated leaves. This shows that dehydrated leaves retain a substantial part of their photosynthetic capacity which can be revealed at normal CO2 concentrations when stomata open at low temperature. In contrast to leaves fed with ABA, decreasing the O2 concentration from 21% to 1% O2 did not increase either the rate of net CO2 uptake or the thermal optimum for photosynthesis of dehydrated leaves. The quantum yield of PSII electron flow (measured by F/Fm) was lower in 1% O2 than in 21% O2 for each leaf pretreatment given (non-dehydrated leaves, dehydrated leaves, and leaves fed with ABA) even within a temperature range in which leaf photosynthesis at normal CO2 concentration was the same in these two O2 concentrations. It is concluded that this probably indicates an heterogeneity of photosynthesis, since this difference in quantum yield disappears when using high CO2 concentrations during measurements.Abbreviations and Symbols ABA
abscisic acid
- Fm
maximum chlorophyll fluorescence
- F
difference between steady-state chlorophyll fluorescence and Fm
- PPFD
photosynthetic photon flux density
We would like to thank Dr. J.-M. Briantais (Laboratoire d'écologie végétale, Orsay, France) for help during fluorescence measurements and Ms. J. Liebert for technical assistance. 相似文献
2.
3.
Attached leaves of Zea mays were illuminated with monochromatic light, with either the upper or the lower epidermis facing the light source. The mesophyll absorbed between 99.5 and 99.6% of the red or blue light used. An inversion of the light direction therefore caused a 200- to 250-fold change in the quantum flux into each epidermis. This variation in quantum flux did not affect stomatal conductance. Stomatal conductance was however correlated with intercellular CO2 concentration, ci, and the relationship between stomatal conductance and ci appeared also to remain the same if changes in ci were brought about by changes in atmospheric CO2 concentration instead of light. A close inspection of the data showed that stomata of the upper (adaxial) epidermis exhibited a small increase in conductance (<0.1 cm s-1) in response to blue light that was superimposed on the dominating response to ci. 相似文献
4.
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) protein kinase (PPCK) was purified ∼1,500-fold from developing castor oil seeds (COS).
Gel filtration and immunoblotting with anti-(rice PPCK2)-immune serum indicated that this Ca2+-insensitive PPCK exists as a 31-kDa monomer. COS PPCK-mediated rephosphorylation of the 107-kDa subunit (p107) of COS PEPC1
(K
m = 2.2 μM) activated PEPC1 by ∼80% when assayed under suboptimal conditions (pH 7.3, 0.2 mM PEP, and 0.125 mM malate). COS
PPCK displayed remarkable selectivity for phosphorylating COS PEPC1 (relative to tobacco, sorghum, or maize PEPCs), exhibited
a broad pH-activity optima of ∼pH 8.5, and at pH 7.3 was activated 40–65% by 1 mM PEP, or 10 mM Gln or Asn, but inhibited
65% by 10 mM L-malate. The possible control of COS PPCK by disulfide-dithiol interconversion was suggested by its rapid inactivation
and subsequent reactivation when incubated with oxidized glutathione and then dithiothreitol. In vitro PPCK activity correlated
with in vivo p107 phosphorylation status, with both peaking in mid-cotyledon to full-cotyledon developing COS. Notably, PPCK
activity and p107 phosphorylation of developing COS were eliminated following pod excision or prolonged darkness of intact
plants. Both effects were fully reversed 12 h following reillumination of darkened plants. These results implicate a direct
relationship between the up-regulation of COS PPCK and p107 phosphorylation during the recommencement of photosynthate delivery
from illuminated leaves to the non-photosynthetic COS. Overall, the results support the hypothesis that PEPC and PPCK participate
in the control of photosynthate partitioning into C-skeletons needed as precursors for key biosynthetic pathways of developing
COS.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
5.
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl
chlorophyll
- FBP
fructose-1,6-bisphosphate
- FBPase
fructose-1,6-bisphosphatase
- Fru6P
fructose-6-phosphate
- Glc6P
glucose-6-phosphate
- PGA
3-phosphoglycerate
- Pi
inoganic phosphate
- Rubisco
RuBP carboxylase/oxygenase
- RuBP
ribulose-1,5-bisphosphate
- Ru5P
ribulose-5-phosphate
- triose-P
triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate) 相似文献
6.
(±)-Abscisic acid (ABA) at 10-5 M was added to the transpiration stream of leaves of 16 species (C3 and C4, monocotyledons and dicotyledons). Stomatal responses followed one of three patterns: i) stomata that were wide and insensitive to CO2 initially, closed partially and became sensitive to CO2; ii) for stomata that were sensitive to CO2 before the application of ABA, the range of highest sensitivity to CO2 shifted from high to low intercellular partial pressures of CO2, for instance in leaves of Zea mays from 170–350 to 70–140 bar; iii) when stomata responded strongly to ABA, their conductance was reduced to a small fraction of the initial conductance, and sensitivity to CO2 was lost. The photosynthetic apparatus was affected by applications of ABA to various degrees, from no response at all (in agreement with several previous reports on the absence of effects of ABA on photosynthesis) through a temporary decrease of its activity to a lasting reduction. Saturation curves of photosynthesis with respect to the partial pressure of CO2 in the intercellular spaces indicated that application of ABA could produce three phenomena: i) a reduction of the initial slope of the saturation curve (which indicates a diminished carboxylation efficiency); ii) a reduction of the level of the CO2-saturated rate of assimilation (which indicates a reduction of the ribulose-1,5-bisphosphate regeneration capacity); and iii) an increase of the CO2 compensation point. Photosynthesis of isolated mesophyll cells was not affected by ABA treatments. Responses of the stomatal and photosynthetic apparatus were usually synchronous and often proportional to each other, with the result that the partial pressure of CO2 in the intercellular spaces frequently remained constant in spite of large changes in conductance and assimilation rate. Guard cells and the photosynthetic apparatus were able to recover from effects of ABA applications while the ABA supply continued. Recovery was usually partial, in the case of the photosynthetic apparatus occasionally complete. Abscisic acid did not cause stomatal closure or decreases in the rate of photosynthesis when it was applied during a phase of stomatal opening and induction of photosynthesis that followed a transition from darkness to light.Abbreviations and symbols
A
rate of CO2 assimilation
- ABA
(±)-abscisic acid
-
c
a
partial pressure of CO2 in the ambient air or in the gas supplied to the leaf chambers
-
c
i
partial pressure of CO2 in the intercellular spaces of a leaf
-
e
a
partial pressure of H2O in the air
-
g
conductance for water vapor
-
J
quantum flux
-
T
1
leaf temperature 相似文献
7.
Separating the contribution of the upper and lower mesophyll to photosynthesis in Zea mays L. leaves
The appearance of transverse sections of maize leaves indicates the existence of two airspace systems serving the mesophyll, one connected to the stomata of the upper epidermis and the other to the stomata of the lower surface, with few or no connections between the two. This study tests the hypothesis that the air-space systems of the upper and lower mesophyll are separated by a defined barrier of measurable conductance. A mathematical procedure, based on this hypothesis, is developed for the quantitative separation of the contributions made by the upper and lower halves of the mesophyll to carbon assimilation using gasexchange data. Serial paradermal sections and three-dimensional scanning-electron-microscope images confirmed the hypothesis that there were few connections between the two air-systems. Simultaneous measurements of nitrous-oxide diffusion across the leaf and of transpiration from the two surfaces showed that the internal conductance was about 15% of the maximum observed stomatal conductance. This demonstrates that the poor air-space connections, indicated by microscopy, represent a substantial barrier to gas diffusion. By measuring the CO2 and water-vapour fluxes from each surface independently, the intercellular CO2 concentration (c
i) of each internal air-space system was determined and the flux between them calculated. This allowed correction of the apparent CO2 uptake at each surface to derive the true CO2 uptake by the mesophyll cells of the upper and lower halves of the leaf. This approach was used to analyse the contribution of the upper and lower mesophyll to CO2 uptake by the leaf as a whole in response to varying light levels incident on the upper leaf surface. This showed that the upper mesophyll was light-saturated by a photon flux of approx. 1000 mol·m-2·s-1 (i.e. about one-half of full sunlight). The lower mesophyll was not fully saturated by photon fluxes of nearly double full sunlight. At low photon fluxes the c
i of the upper mesophyll was significantly less than that of the lower mesophyll, generating a significant upward flux of CO2. At light levels equivalent to full sunlight, and above, c
i did not differ significantly between the two air space systems. The physiological importance of the separation of the air-space systems of the upper and lower mesophyll to gas exchange is discussed.Abbreviations and symbols
A
net leaf CO2 uptake rate
-
A
upper
app.
and A
lower
app.
net rates of CO2 uptake across the upper and lower surfaces
-
A
upper and A
lower
derived net rates of CO2 uptake by the upper and lower mesophyll
-
A
upward
net flux of CO2 from the lower to upper mesophyll
-
c
a, c
a, upper and c
a, lower
the CO2 concentrations in the air around the leaf above the upper surface and below the lower surface
-
c
N2O
the concentration of N2O in the air around the leaf
-
c
i, c
i, upper and c
i, lower
the mesophyll intercellular CO2 concentration of the whole leaf, the upper mesophyll and the lower mesophyll
-
g
i
leaf internal conductance to CO2
-
g
s, g
s, lower and g
s, upper
the stomatal conductance of the whole leaf, the lower surface and the upper surface
-
g
the total conductance across the leaf
-
Q
the photosynthetically active photon flux density 相似文献
8.
Net CO2 uptake rates (P
N) were measured for the vine cacti Hylocereus undatus and Selenicereus megalanthus under relatively extreme climatic conditions in Israel. Withholding water decreased rates and the daily amount of CO2 uptake by about 10 % per day. Compared with more moderate climates within environmental chambers, the higher temperatures
and lower relative humidity in the field led to a more rapid response to drought. The upper envelopes of scatter diagrams
for P
N
versus temperature for these Crassulacean acid metabolism species, which indicate the maximal rates at a particular temperature,
were determined for both night time CO2 uptake in Phase I (mediated by phosphoenolpyruvate carboxylase, PEPC) and early morning uptake in Phase II (mediated by ribulose-1,5-bisphosphate carboxylase/oxygenase,
RuBPCO). As stem temperature increased above 13 °C, the maximal P
N increased exponentially, reaching maxima near 27 °C of 12 and 8 μmol m−2 s−1 for Phases I and II, respectively, for H. undatus and 6 and 4 μmol m−2 s−1, respectively, for S. megalanthus. Based on the Arrhenius equation, the apparent activation energies of PEPC and RuBPCO were 103 and 86 kJ mol−1, respectively, for H. undatus and 77 and 49 kJ mol−1, respectively, for S. megalanthus, within the range determined for a diverse group of species using different methodologies. Above 28 °C, P
N decreased an average of 58 % per °C in Phase I and 30 % per °C in Phase II for the two species; such steep declines with
temperature indicate that irrigation then may lead to only small enhancements in net CO2 uptake ability. 相似文献
9.
Photosystem II chlorophyll fluorescence and leaf net gas exchanges (CO2 and H2O) were measured simultaneously on bean leaves (Phaseolus vulgaris L.) submitted either to different ambient CO2 concentrations or to a drought stress. When leaves are under photorespiratory conditions, a simple fluorescence parameter F/ Fm (B. Genty et al. 1989, Biochem. Biophys. Acta 990, 87–92; F = difference between maximum, Fm, and steady-state fluorescence emissions) allows the calculation of the total rate of photosynthetic electron-transport and the rate of electron transport to O2. These rates are in agreement with the measurements of leaf O2 absorption using 18O2 and the kinetic properties of ribulose-1,5bisphosphate carboxylase/oxygenase. The fluorescence parameter, F/Fm, showed that the allocation of photosynthetic electrons to O2 was increased during the desiccation of a leaf. Decreasing leaf net CO2 uptake, either by decreasing the ambient CO2 concentration or by dehydrating a leaf, had the same effect on the partitioning of photosynthetic electrons between CO2 and O2 reduction. It is concluded that the decline of net CO2 uptake of a leaf under drought stress is only due, at least for a mild reversible stress (causing at most a leaf water deficit of 35%), to stomatal closure which leads to a decrease in leaf internal CO2 concentration. Since, during the dehydration of a leaf, the calculated internal CO2 concentration remained constant or even increased we conclude that this calculation is misleading under such conditions.Abbreviations Ca, Ci
ambient, leaf internal CO2 concentrations
- Fm, Fo, Fs
maximum, minimal, steady-state fluorescence emission
- Fv
variable fluorescence emission
- PPFD
photosynthetic photon flux density
- qp, qN
photochemical, non-photochemical fluorescence quenching
- Rubisco
ribulose-1,5-bisphosphate carboxylase/oxygenase 相似文献
10.
Tarek Slatni Gianpiero ViganiImen Ben Salah Saber KouasMarta Dell’Orto Houda GouiaGraziano Zocchi Chedly Abdelly 《Plant science》2011,181(2):151-158
Iron is an important nutrient in N2-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H+-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H+-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H+-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution. 相似文献
11.
In illuminated maize (Zea mays L.) leaves, the distribution of triose phosphates, 3-phosphoglycerate, malate and various amino acids between the chloroplastic and the extrachloroplastic compartments of mesophyll and bundle-sheath cells, and the total vacuolar fraction of the leaves, was determined by a combination of previously published methods, for separating mesophyll from bundle-sheath material, and for nonaqueous subcellular fractionation. The results show that the triose phosphate/3-phosphoglycerate ratio in the extrachloroplastic fraction of the mesophyll cells is about 20-fold higher than in the bundle-sheath cells, which is in accordance with a triose phosphate/phosphoglycerate shuttle postulated previously. Whereas the vacuolar compartment was shown to contain most of the cellular malate, amino acids were found to be almost absent from this compartment. The amino-acid pattern in the extrachloroplastic fraction of the bundle-sheath cells largely resembled the pattern in whole leaves. These results show that for future studies the analysis of amino-acid contents in whole maize leaves can be used as a measure for the amino-acid levels in the cytosol of bundle-sheath cells.Abbreviations BS
bundle sheath
- Chl
chlorophyll
- Man
-mannosidase
- ME
malic enzyme
- MDH
malate dehydrogenase
- MS
mesophyll
- PEPCase
phosphoenolpyruvate carboxylase
- PGA
3-phosphoglycerate
- trioseP
triose phosphate
This work was supported by the Bundesminister für Forschung und Technologie. 相似文献
12.
The relationship between the gas-exchange characteristics of attached leaves of Zea mays L. and the contents of photosynthetic intermediates was examined at different intercellular partial pressure of CO2 and at different irradiances at a constant intercellular partial pressure of CO2. (i) The behaviour of the pools of the C4-cycle intermediates, phosphoenolpyruvate and pyruvate, provides evidence for light regulation of their consumption. However, light regulation of phosphoenolpyruvate carboxylase does not influence the assimilation rate at limiting intercellular partial pressures of CO2. (ii) A close correlation between the pools of phosphoenolpyruvate and glycerate-3-phosphate exists under many different flux conditions, consistent with the notion that the pools of C4 and C3 cycles are connected via the interconversion of glycerate-3-phosphate and phosphoenolpyruvate. (iii) The ratio of triose-phosphate to glycerate-3-phosphate is used as an indicator of the availability of ATP and NADPH. Changes of this ratio with CO2 and with irradiance are compared with results obtained in C3 leaves and indicate that the mechanism of regulation of carbon assimilation by light in leaves of C4 plants may differ from that in C3 plants. (iv) The behaviour of the ribulose-1,5-bisphosphate pool with CO2 and irradiance is contrasted with the behaviour of these pools measured in leaves of C3 plants.Abbreviations
P
i
intercellular CO2 pressure
- RuBP
ribulose-1,5-bisphosphate
- PEP
phosphoenolpyruvate
- triose-P
triose phosphates
- PGA
glycerate-3-phosphate 相似文献
13.
Extracts from sunflower leaves possess a high ribulose-1,5-bisphosphate (RuBP) carboxylase capacity but this enzyme activity is not stable. A purification procedure, developed with preservation of carboxylase activity by MgSO4, yielded purified RuBP carboxylase with high specific activity (40 nkat mg-1 protein). Measurement of kinetic parameters showed high Km values (RuBP, HCO
3
-
) and high Vmax of the reaction catalyzed by this sunflower enzyme; the results are compared with those obtained for soybean carboxylase. Enzyme characteristics are discussed in relation to stabilization and activation procedures and to the high photosynthesis rates of this C3 species. 相似文献
14.
Using an open gas-exchange system, apparent photosynthesis, true photosynthesis (TPS), photorespiration (PR) and dark respiration of sunflower (Helianthus annuus L.) leaves were determined at three temperatures and between 50 and 400 l/l external CO2. The ratio of PR/TPS and the solubility ratio of O2/CO2 in the intercellular spaces both decreased with increasing CO2. The rate of PR was not affected by the CO2 concentration in the leaves and was independent of the solubility ratio of oxygen and CO2 in the leaf cell. At photosynthesis-limiting concentrations of CO2, the ratio of PR/TPS significantly increased from 18 to 30°C and the rate of PR increased from 4.3 mg CO2 dm-2 h-1 at 18°C to 8.6 mg CO2 dm-2 h-1 at 30°C. The specific activity of photorespired CO2 was CO2-dependent but temperature-independent, and the carbon traversing the glycolate pathway appeared to be derived both from recently fixed assimilate and from older reserve materials. It is concluded that PR as a percentage of TPS is affected by the concentrations of O2 and CO2 around the photosynthesizing cells, but the rate of PR may also be controlled by other factors.Abbreviations APS
apparent photosynthesis (net CO2 uptake)
- PR
photorespiration (CO2 evolution in light)
- RuBP
ribulose-1,5-bisphosphate
- TPS
true photosynthesis (true CO2 uptake) 相似文献
15.
mRNA expression patterns of genes for metabolic key enzymes sucrose phosphate synthase (SPS), phosphoenolpyruvate carboxylase (PEPC), pyruvate kinase, ribulose 1,5-bisphosphate carboxylase/oxygenase, glutamine synthetase 1, and
glutamine synthetase 2 were investigated in leaves of rice plants grown at two nitrogen (N) supplies (N0.5, N3.0). The relative gene expression patterns were similar in all leaves except for 9th leaf, in which mRNA levels were generally depressed. Though increased N supply prolonged the expression period of each mRNA,
it did not affect the relative expression intensity of any mRNA in a given leaf. SPS Vmax, SPS limiting and PEPC activities, and carbon flow were examined. The ratio between PEPC activity and SPS Vmax was higher in leaves developed at the vegetative growth stage (vegetative leaves: 5th and 7th leaves) than in leaves developed after the ear primordia formation stage (reproductive leaves: 9th and flag leaves). PEPC activity and SPS Vmax decreased with declining leaf N content. After using 14CO2 the 14C photosynthate distribution in the amino acid fraction was higher in vegetative than in reproductive leaves when compared
for the same leaf N status. Thus, at high PEPC/SPS activities ratio, more 14C photosynthate was distributed to the amino acid pool, whereas at higher SPS activity more 14C was channelled into the saccharide fraction. Thus, leaf ontogeny was an important factor controlling photosynthate distribution
to the N- or C-pool, respectively, regardless of the leaf N status. 相似文献
16.
3-Mercaptopicolinic acid, a non-competitive inhibitor of phosphoenolpyruvate carboxykinase (EC 4.1.1.19) was used to study the control of gluconeogenesis by this enzyme in germinating marrow (Cucurbita pepo) cotyledons. In vitro, phosphoenolpyruvate carboxykinase was inhibited by 3-mercaptopicolinic acid, with aKi of 5.9 M. At 25°C the inhibitor caused an increase in the label incorporated from [2-14C]acetate into CO2, and a decrease in the label incorporated into the insoluble and neutral fractions. Phosphoenolpyruvate carboxykinase had a flux control coefficient for gluconeogenesis (C
PEPCK
J
) of between 0.7 and 1.0. 3-Mercaptopicolinic acid was a less effective inhibitor of phosphoenolpyruvate carboxykinase at lower temperatures (Ki = 8.6 M at 17°C, 13.3 M at 10°C) and had similar effects on the metabolism of [2-14C]acetate by marrow cotyledons when the temperature was reduced to 17°C and 10°C. The control coefficient for this enzyme did not change with temperature, indicating that phosphoenolpyruvate carboxykinase exerts a high degree of control over gluconeogenesis at all temperatures examined.Abbreviations PEP
Phosphoenolpyruvate
- PEPCK
PEP carboxykinase
The authors thank Dr. Ian Woodrow (University of Melbourne, Australia) for helpful discussions. This work was supported by a grant from the Science and Engineering Research Council, U.K. (GR/F 50978). 相似文献
17.
The aim of this work was to investigate the mechanism of formation of triose phosphates and 3-phosphoglycerate during photosynthetic induction in leaves of Zea mays. Simultaneous measurements of gas exchange, chlorophyll a fluorescence and metabolite contents of maize leaves were made. Leaves illuminated in the absence of CO2 showed a build-up of triose phosphates during the first 2 min of illumination which was comparable to the build-up observed in the presence of CO2. Isolated mesophyll protoplasts, which lack the Calvin cycle, also showed a build-up of triose phosphates upon illumination. Leaves contained amounts of phosphoglycerate mutase and enolase adequate to account for the formation of triose phosphates and 3-phosphoglycerate from intermediates of the C4 cycle and their precursors. 相似文献
18.
The rate of CO2 fixation (Fc) and 680 nm chlorophyll fluorescence emission (F680) were measured simultaneously during induction of photosynthesis in Zea mays L. leaves under varying experimental conditions in order to assess the validity of fluorescence as an indicator of in vivo photosynthetic carbon assimilation. Z. mays leaves showed typical Kautsky fluorescence induction curves consisting of a fast rise in emission (O to P) followed by a slow quenching via a major transient (S-M) to a steady-state (T). After an initial lag, net CO2 assimilation commenced at a point corresponding to the onset of the S-M transient on the F680 induction curve. Subsequently, Fc and F680 always arrived at a steady-state simultaneously. Decreasing the dark-adaption period increased the rate of induction of both parameters. Alteration of leaf temperature produced anti-parallel changes in induction characteristics of Fc and F680. Reducing the CO2 level to below that required for saturation of photosynthesis also produced anti-parallel changes during induction, however, at CO2 concentrations tenfold greater than the atmospheric level the rate of F680 quenching from P to T was appreciably reduced without a similar change in the induction of Fc. Removal of CO2 at steady-state produced only a small increase in F680 and a correspondingly small decrease in F680 occurred when CO2 was re-introduced. The complex relationship between chlorophyll fluorescence and carbon assimilation in vivo is discussed and the applicability of fluorescence as an indicator of carbon assimilation is considered.Abbreviations Fc
rate of CO2 fixation
- F680
fluorescence emission at 680 nm 相似文献
19.
20.
Maize (Zea mays L.) grown on low (0.8 mM) NO
3
-
, as well as untransformed and transformed Nicotiana plumbaginifolia constitutively expressing nitrate reductase (NR), was used to study the effects of NO
3
-
on the NR activation state. The NR activation state was determined from the relationship of total activity extracted in the presence of ethylenediaminetetracetic acid to that extracted in the presence of Mg2+. Light activation was observed in both maize and tobacco leaves. In the tobacco lines, NO
3
-
did not influence the NR activation state. In excised maize leaves, no correlation was found between the foliar NO
3
-
content and the NR activation state. Similarly, the NR activation state did not respond to NO
3
-
. Since the NR activation state determined from the degree of Mg2+-induced inhibition of NR activity is considered to reflect the phosphorylation state of the NR protein, the protein phosphatase inhibitor microcystin LR was used to test the importance of protein phosphorylation in the NO
3
-
-induced changes in NR activity. In-vivo inhibition of endogenous protein phosphatase activity by microcystin-LR decreased the level of NR activation in the light. This occurred to the same extent in the presence or absence of exogenous NO
3
-
. We conclude that NO
3
-
does not effect the NR activation state, as modulated by protein phosphorylation in either tobacco (a C3 species) or maize (a C4 species). The short-term regulation of NR therefore differs from the NO
3
-
-mediated responses observed for phosphoenolpyruvate carboxylase and sucrose phosphate synthase.Abbreviations Chl
chlorophyll
- MC
microcystin-LR
- PEP-Case
phosphoenolpyruvate carboxylase
- SPS
sucrose-phosphate synthase
We are indebted to Madeleine Provot and Nathalie Hayes for excellent technical assistance. This work was funded by EEC Biotechnology Contract No. BI02 CT93 0400, project of technical priority, Network D — Nitrogen Utilisation and Efficiency. 相似文献