首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Glutamine kinetics and its relation to transamination of leucine and urea synthesis were quantified in 16 appropriate-for-gestational-age infants, four small-for-gestational-age infants, and seven infants of diabetic mothers. Kinetics were measured between 4 and 5 h after the last feed (fasting) and in response to formula feeding using [5-(15)N]glutamine, [1-(13)C,(15)N]leucine, [(2)H(5)]phenylalanine, and [(15)N(2)]urea tracers. Leucine nitrogen and glutamine kinetics during fasting were significantly higher than those reported in adults. De novo synthesis accounted for approximately 85% of glutamine turnover. In response to formula feeding, a significant increase (P = 0.04) in leucine nitrogen turnover was observed, whereas a significant decrease (P = 0.002) in glutamine and urea rate of appearance was seen. The rate of appearance of leucine nitrogen was positively correlated (r(2) = 0.59, P = 0.001) with glutamine turnover. Glutamine flux was negatively correlated (r(2) = 0.39, P = 0.02) with the rate of urea synthesis. These data suggest that, in the human newborn, glutamine turnover is related to a high anaplerotic flux into the tricarboxylic acid cycle as a consequence of a high rate of protein turnover. The negative relationship between glutamine turnover and the irreversible oxidation of protein (urea synthesis) suggests an important role of glutamine as a nitrogen source for other synthetic processes and accretion of body proteins.  相似文献   

3.
4.
Changes in hepatopancreas, muscle and gill tissue nitrogen metabolic profiles were studied in a penaeid prawn, Penaeus indicus, following its exposure to sublethal concentrations of methylparathion, carbaryl and aldrin. In all the insecticide exposed prawn tissues, Ammonia levels were significantly increased and a shift in the nitrogen metabolism towards the synthesis of urea and glutamine was observed. Inhibition of glutamate oxidation to ammonia and alpha-ketoglutarate by glutamate dehydrogenase suggests a mechanism whereby hyperammonemia is reduced by minimizing the addition of further ammonia to the already existing elevated ammonia pool. Increased alanine and aspartate aminotransferases demonstrates the onset of gluconeogenesis. Mechanisms to detoxify the ammonia by enhancing the synthesis of urea and glutamine at the cellular level was observed in the selected tissues pave way for the survivability of prawns in insecticide polluted environs.  相似文献   

5.
Effects of repeated administration of benthiocarb on the nitrogen metabolism of hepatic and neuronal systems have been studied. Repeated benthiocarb treatment was associated with significant decrease in proteins with a concomitant increase in free amino acids (FAA) and specific activity levels of proteases suggesting impaired protein synthesis or elevated proteolysis. The glycogenic aminotransferases showed a significant elevation in both the tissues indicating high feeding of ketoacids into oxidative pathway for efficient operation of TCA cycle to combat energy crisis during induced benthiocarb stress. However, the activity levels of branched-chain aminotransferases decreased suggesting their reduced contribution of intermediates to TCA cycle. A comparative evaluation of the activity levels of ammonogenic enzymes, AMP deaminase, adenosine deaminase and glutamate dehydrogenase (GDH) indicated that ammonia was mostly contributed by nucleotide deamination rather than by oxidative deamination. GDH exhibited reduced activity due to low availability of glutamate. In accordance with increased levels of urea, the activity levels of arginase, a terminal enzyme of urea cycle was increased suggesting increased urea cycle operation in order to combat the increased ammonia content. As the presence of urea cycle in the brain is rather doubtful, the conversion of ammonia to glutamine for the synthesis of GABA is envisaged in brain whereas in liver, excess ammonia was converted to urea through ornithine-arginine reacting system. The increased glutaminase activity observed during benthiocarb intoxication is accounted for counteracting acidosis or maintenance of metabolic homeostasis. Arginase, a terminal enzyme of ornithine cycle showed increased activity denoting the efficient potentiality of tissues to avert ammonia toxicity. The changes observed in tissues of rat administered with benthiocarb reflects a shift in nitrogen metabolism for efficient mobilization of end products of protein catabolism.  相似文献   

6.
7.
We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P‐ and N‐limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P‐ and N‐limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P‐limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N‐limitation. Under P‐limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night.  相似文献   

8.
9.
The primary steps of N2, ammonia and nitrate metabolism in Klebsiella pneumoniae grown in a continuous culture are regulated by the kind and supply of the nitrogenous compound. Cultures growing on N2 as the only nitrogen source have high activities of nitrogenase, unadenylated glutamine synthetase and glutamate synthase and low levels of glutamate dehydrogenase. If small amounts of ammonium salts are added continuously, initially only part of it is absorbed by the organisms. After 2–3 h complete absorption of ammonia against an ammonium gradient coinciding with an increased growth rate of the bacteria is observed. The change in the extracellular ammonium level is paralleled by the intracellular glutamine concentration which in turn regulates the glutamine synthetase activity. An increase in the degree of adenylation correlates with a repression of nitrogenase synthesis and an induction of glutamate dehydrogenase synthesis. Upon deadenylation these events are reversed.—After addition of nitrate ammonia appears in the medium, probably due to the action of a membrane bound dissimilatory nitrate reductase.—Addition of dinitrophenol causes transient leakage of intracellular ammonium into the medium.  相似文献   

10.
Methanobacterium thermoautotrophicum can utilize glutamine and urea as well as ammonia as the sole nitrogen source during growth on H2 and CO2. High-field 15N-NMR has been used to compare the assimilation of these different nitrogen sources by this organism. The 15N-NMR spectra of extracts of cells grown in media containing [delta-15N]glutamine as the nitrogen source show that the glutamine amide nitrogen is rapidly converted to glutamate. The 15N-NMR spectra of cell extracts from cells grown on [15N]urea show a marked increase in the labeling of the alpha-NH2 of glutamate concurrent with a decrease in the urea resonance. These two nitrogen sources do not show the metabolic shift to alanine as the major resonance in stationary phase as is seen with 15NH4Cl. This behavior is discussed in terms of the enzymes of nitrogen metabolism.  相似文献   

11.
12.
Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine‐derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine‐deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.  相似文献   

13.
D. Cammaerts  M. Jacobs 《Planta》1985,163(4):517-526
Glutamate-dehydrogenase (GDH, EC 1.4.1.2) activity and isoenzyme patterns were investigated in Arabidopsis thaliana plantlets, and parallel studies were carried out on glutamine synthetase (GS, EC 6.3.1.2). Both NADH-GDH and NAD-GDH activities increased during plant development whereas GS activity declined. Leaves deprived of light showed a considerable enhancement of NADH-GDH activity. In roots, both GDH activities were induced by ammonia whereas in leaves nitrogen assimilation was less important. It was demonstrated that the increase in GDH activity was the result of de-novo protein synthesis. High nitrogen levels were first assimilated by NADH-GDH, while GS was actively involved in nitrogen metabolism only when the enzyme was stimulated by a supply of energy, generated by NAD-GDH or by feeding sucrose. When methionine sulfoximine, an inhibitor of GS, was added to the feeding solution, NADH-GDH activity remained unaffected in leaves whereas NAD-GDH was induced. In roots, however, there was a marked activation of GDH and no inactivation of GS. It was concluded that NADH-GDH was involved in the detoxification of high nitrogen levels while NAD-GDH was mainly responsible for the supply of energy to the cell during active assimilation. Glutamine synthetase, on the other hand was involved in the assimilation of physiological amounts of nitrogen. A study of the isoenzyme pattern of GDH indicated that a good correlation existed between the relative activity of the isoenzymes and the ratio of aminating to deaminating enzyme activities. The NADH-GDH activity corresponded to the more anodal isoenzymes while the NAD-GDH activity corresponded to the cathodal ones. The results indicate that the two genes involved in the formation of GDH control the expression of enzymes with different metabolic functions.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

14.
Nitrogen excretion by the gulf toadfish (Opsanus beta) is of interest because of its high proportion of urea excretion compared with that of other teleosts. To better understand the factors influencing the timing of nitrogen excretion, the ratio of excreted urea∶ammonia, and the effector molecules regulating these processes, gulf toadfish were subjected to a series of experiments that moved them progressively from internal laboratory to outdoor mesocosm settings while assessing their behavior, nitrogen excretion patterns, levels of plasma hormones/effectors, and other parameters. In confined flux chambers in both laboratory and outdoor settings, toadfish nitrogen excretion was largely observed as urea pulses, with no apparent diel patterns to the pulses. Unrestrained toadfish in mesocosms exhibited distinctly nocturnal behavior, remaining exclusively in shelters during the day but taking several forays out into the mesocosm at night. In contrast to nitrogen excretion patterns in chambers, urea and ammonia were coexcreted in mesocosms and ratios for urea∶ammonia were very close to 1∶1 for both fed and fasted toadfish. The majority of measured excretion (and corresponding declines in plasma urea levels) occurred during two distinct periods of pulsing during daylight hours (0600-1000 and 1600-1800 hours). The declines in plasma urea associated with excretion were preceded by/coincided with declines in plasma cortisol. No day/night or hourly patterns in plasma serotonin (5-hydroxytryptamine [5-HT]) were observed, but there was a strong positive correlation among all samples between plasma urea and 5-HT. There was also a negative correlation between plasma cortisol and 5-HT. As expected for a nocturnally active species, plasma melatonin was significantly lower in daylight hours. A variety of enzyme activities (glutamine synthetase, glutaminase) and mRNA levels (glutamine synthetase, urea transporter, and Rhesus proteins) showed no significant variation over a diel cycle. Unlike prior laboratory studies, our results show that gulf toadfish in a natural setting have a distinctly diurnal pattern of nitrogen excretion and that ammonia and urea are coexcreted. The decline in plasma cortisol associated with urea pulses noted in prior laboratory studies was not as evident in the natural setting.  相似文献   

15.
Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O-UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate-limiting enzyme of the O-UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O-UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O-UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.  相似文献   

16.
We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.  相似文献   

17.
Pregnant rats of 19th and 21st days were given an acute nitrogen overload produced by an infusion of either 0.2 M ammonium acetate or 0.2 M glutamine. Metabolic adaptations to nitrogen excess were studied measuring--in fetomaternal unit--non-protein nitrogen content and the activities of enzymes related with ammonia metabolism. Maternal and fetal plasma urea levels were increased by ammonium acetate treatment. Glutamine overload increased more the amino acid content in the mothers than in conceptus. As response to ammonium acetate treatment, glutamate dehydrogenase activity in liver was more sensitive in pregnant than in nonpregnant rats, suggesting more nitrogen incorporation into amino acids in pregnancy. Regarding glutamine synthetase activity, both treatments had an opposite effect except in kidney. The adenylate deaminase activity of pregnant rats was inhibited similarly to nonpregnant rats by nitrogen overloads, but stronger after glutamine infusion. Placenta and fetal metabolism were adjusted, as the dams, to lack of ammonia production by nitrogen overloads and to glutamine synthesis by ammonium acetate infusion.  相似文献   

18.
This study experimentally examined influences of environmental variables on the activities of key enzymes involved in carbon and nitrogen metabolism of the submersed marine angiosperm, Zostera marina L. Nitrate reductase activity in leaf tissue was correlated with both water-column nitrate concentrations and leaf sucrose levels. Under elevated nitrate, shoot nitrate reductase activity increased in both light and dark periods if carbohydrate reserves were available. When water-column nitrate was low, glutamine synthetase activity in leaf tissue increased with environmental ammonium. In contrast, glutamine synthetase activity in belowground tissues was statistically related to both nitrate and temperature. At the optimal growth temperature for this species (ca. 25 °C), increased water-column nitrate promoted an increase in glutamine synthetase activity of belowground tissues. As temperatures diverged from the optimum, this nitrate effect on glutamine synthetase was no longer evident. Activities of both sucrose synthase and sucrose-P synthase were directly correlated with temperature. Sucrose-P synthase activity also was correlated with salinity, and sucrose synthase activity was statistically related to tissue ammonium. Overall, the enzymatic responses that were observed indicate a tight coupling between carbon and nitrogen metabolism that is strongly influenced by prevailing environmental conditions, especially temperature, salinity, and environmental nutrient levels.  相似文献   

19.
20.
Chromatium vinosum strain D, Thiocapsa roseopersicina strain 6311 and Ectothiorhodospira mobilis strain 8112 were grown anaerobically in the light with various single nitrogen sources. When substituted for NH4Cl only glutamine and casamino acids supported good growth of all strains tested. Peptone and urea were utilized by C. vinosum and T. roseopersicina, glutamate, asparagine and nitrate only by C. vinosum. The strains were able to grow with molecular nitrogen; complete inhibition of this growth was observed in the presence of alanine with E. mobilis, and of alanine or asparagine with T. roseopersicina.Glutamate dehydrogenase, requiring either NADH or NADPH, NADH-linked glutamate synthase, and glutamine synthetase were demonstrate in the above organisms grown on NH4Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号