首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

2.
Heller NE  Sanders NJ  Shors JW  Gordon DM 《Oecologia》2008,155(2):385-395
Climate change may exacerbate invasions by making conditions more favorable to introduced species relative to native species. Here we used data obtained during a long-term biannual survey of the distribution of ant species in a 481-ha preserve in northern California to assess the influence of interannual variation in rainfall on the spread of invasive Argentine ants, Linepithema humile, and the displacement of native ant species. Since the survey began in 1993, Argentine ants have expanded their range into 74 new hectares. Many invaded hectares were later abandoned, so the range of Argentine ants increased in some years and decreased in others. Rainfall predicted both range expansion and interannual changes in the distribution of Argentine ants: high rainfall, particularly in summer months, promoted their spread in the summer. This suggests that an increase in rainfall will promote a wider distribution of Argentine ants and increase their spread into new areas in California. Surprisingly, the distribution of two native ant species also increased following high rainfall, but only in areas of the preserve that were invaded by L. humile. Rainfall did not have a negative impact on total native ant species richness in invaded areas. Instead, native ant species richness in invaded areas increased significantly over the 13 years of observation. This suggests that the impact of Argentine ants on naïve ant communities may be most severe early in the invasion process.  相似文献   

3.
Biological invasions can have severe and widespread impacts on ecological communities. A few species of ants have become particularly damaging invaders but quantitative data of their impacts on many taxa is still lacking. We provide experimental evidence using artificial nests baited with quail eggs that the invasive Argentine ant (Linepithema humile) can be a significant avian nest predator – Argentine ants recruited to more nests and in higher abundance than the native ant species they displace. However, at a site invaded by Argentine ants, we monitored over 400 nests of a ground-nesting species, the Dark-eyed Junco (Junco hyemalis), and found that less than 2% of nests failed as a result of Argentine ant predation/infestation. A review of the literature also suggests that Argentine ants may not be a serious threat to bird nests relative to other predators or parasites. However, invasive ants with the capability of overwhelming prey though stinging (specifically the red-imported fire ant, Solenopsis invicta), may have a higher impact on avian nesting success. Received 14 January 2005; revised 28 April 2005; accepted 12 May 2005.  相似文献   

4.
Predator–prey interactions play a key role in the success and impacts of invasive species. However, the effects of invasive preys on native predators have been poorly studied. Here, we first reviewed hypotheses describing potential relationships between native predators and invasive preys. Second, we examined how an invasive prey, the Argentine ant (Linepithema humile), affected a native terrestrial amphibian community. In the field, we looked at the structure of the amphibian community in invaded versus uninvaded areas and characterized amphibian trophic ecology. The amphibian community sampled seemed to show a species-dependent response in abundance to invasion: adults of the natterjack toad (Bufo calamita), the species demonstrating the highest degree of ant specialization, were less abundant in invaded areas. Although available ant biomass was significantly greater in invaded than in uninvaded areas (only Argentine ants occurred in the former), amphibians consumed relatively fewer ants in invaded areas. In the lab, we quantified amphibian consumption of Argentine ants versus native ants and assessed whether consumption patterns could have been influenced by prior exposure to the invader. The lab experiments corroborated the field results: amphibians preferred native ants over Argentine ants, and prior exposure did not influence consumption. Differences in preference explained why amphibians consumed fewer Argentine ants in spite of their greater relative availability; they might also explain why the most ant-specialized amphibians seemed to avoid invaded areas. Our results suggest the importance to account for predator feeding capacities and dietary ranges to understand the effects of invasive species at higher trophic levels.  相似文献   

5.
The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. The mechanisms by which Argentine ants effectively compete against native ant species have been previously addressed in field studies that centered on interference and exploitation competition at baits and mainly examined the colony-level performance of Argentine ants. Detailed behavioral observations explaining the basis for the strong competitive ability of L. humile are comparatively rare. To gain a better understanding of the mechanisms by which Argentine ants displace native ants we examined the aggressive interactions between the Argentine ants and the odorous house ant, Tapinoma sessile in four different aggression assays: (1) worker dyad interactions, (2) symmetrical group interactions, (3) intruder introductions into an established resident colony, and (4) a resource competition assay which focused on competition for food and nesting space. Our results demonstrate a clear disparity between worker-level and colony-level fighting ability of Argentine ants and provide behavioral evidence to explain the superior interference ability of Argentine ants in group assays. Argentine ants experienced mixed success in fighting against odorous house ants in dyad interactions, but gradually gained a numerical advantage in symmetrical group interactions by active cooperation among nestmates. Results of the resource competition assay indicate that Argentine ants recruit rapidly, numerically dominate food and nesting sites, and aggressively displace T. sessile from baits. Taken together, the results of these assays allow us to pinpoint the behavioral mechanisms responsible for the remarkable competitive ability of Argentine ants.  相似文献   

6.
Holway DA  Suarez AV 《Oecologia》2004,138(2):216-222
The success of some invasive species may depend on phenotypic changes that occur following introduction. In Argentine ants ( Linepithema humile) introduced populations typically lack intraspecific aggression, but native populations display such behavior commonly. We employ three approaches to examine how this behavioral shift might influence interspecific competitive ability. In a laboratory experiment, we reared colonies of Forelius mccooki with pairs of Argentine ant colonies that either did or did not exhibit intraspecific aggression. F. mccooki reared with intraspecifically non-aggressive pairs of Argentine ants produced fewer eggs, foraged less actively, and supported fewer living workers than those reared with intraspecifically aggressive pairs. At natural contact zones between competing colonies of L. humile and F. mccooki, the introduction of experimental Argentine ant colonies that fought with conspecific field colonies caused L. humile to abandon baits in the presence of F. mccooki, whereas the introduction of colonies that did not fight with field colonies of Argentine ants resulted in L. humile retaining possession of baits. Additional evidence for the potential importance of colony- structure variation comes from the Argentine ants native range. At a site along the Rio de la Plata in Argentina, we found an inverse relationship between ant richness and density of L. humile (apparently a function of local differences in colony structure) in two different years of sampling.  相似文献   

7.
David A. Holway 《Oecologia》1998,116(1-2):252-258
Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner. Received: 24 February 1997 / Accepted: 9 November 1997  相似文献   

8.
Invasive species often displace native species and can affect ecological processes in invaded habitats. If invasive species become abundant, changes in prey availability may be particularly harmful to specialist predators. The Argentine ant, Linepithema humile Mayr, is an important invasive species on nearly all continents. Spiders of the genus Zodarion are specialised ant-eating predators native to the Mediterranean yet it is unknown if they can exploit invasive ant species. Here we studied spatial and temporal abundance of this invasive ant and the native spider, Zodarion cesari Pekár, during 4?years in four citrus groves. Circadian activity of both spiders and ants, and capture efficiency and prey specificity of the predator were also evaluated. The abundance of Z. cesari was strongly correlated to L. humile abundance. The predatory activity of spiders varied seasonally with differences on the relative frequency of spiders capturing ants depending on the time of the year. In laboratory, Z. cesari displayed most efficient capture upon the native ant Tapinoma nigerrimum (Nylander) and the invasive ant L. humile in comparison with five other native ant species. These results demonstrate that the native spider Z. cesari is successfully exploiting the invasive ant species L. humile and is likely a locally monophagous predator. We suggest that Z. cesari shifted away from native T. nigerrimum post invasion as both ant species are phylogenetically related and of similar size.  相似文献   

9.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

10.
Human  K. G.  Gordon  D. M. 《Insectes Sociaux》1999,46(2):159-163
Summary: The Argentine ant, Linepithema humile, has invaded many areas of the world, displacing native ants. Its behavior may contribute to its competitive success. Staged and natural encounters were observed at food resources in the field, between Argentine ants and eight ant species native to northern California. There was no relation between the frequency of aggression by any ant species and the outcome of encounters, though Argentine ants were more likely than ants of native species to behave aggressively. When an ant of one species initiated an encounter of any kind with an ant of another species, the ant that did not initiate was likely to retreat. This was true of all species studied. Most encounters between ants were initiated by Argentine ants. Thus the native species tended to retreat more frequently than Argentine ants. Interactions between Argentine ants and native species at food resources, causing ants of native species to retreat, may help Argentine ants to displace native species from invaded areas.  相似文献   

11.
Interactions between the invasive Argentine ant, Linepithema humile, and native ant species were studied in a 450-ha biological reserve in northern California. Along the edges of the invasion, the presence of Argentine ants significantly reduced the foraging success of native ant species, and vice versa. Argentine ants were consistently better than native ants at exploiting food sources: Argentine ants found and recruited to bait more consistently and in higher numbers than native ant species, and they foraged for longer periods throughout the day. Native ants and Argentine ants frequently fought when they recruited to the same bait, and native ant species were displaced from bait during 60% of these encounters. In introduction experiments, Argentine ants interfered with the foraging of native ant species, and prevented the establishment of new colonies of native ant species by preying upon winged native ant queens. The Argentine ants' range within the preserve expanded by 12 ha between May 1993 and May 1994, and 13 between September 1993 and September 1994, with a corresponding reduction of the range of native ant species. Although some native ants persist locally at the edges of the invasion of Argentine ants, most eventually disappear from invaded areas. Both interference and exploitation competition appear to be important in the displacement of native ant species from areas invaded by Argentine ants.  相似文献   

12.
Abstract The Argentine ant (Linepithema humile Mayr) is a worldwide invasive pest species that has been associated with losses of native ant and non‐ant invertebrates in its introduced range. To date, few studies have investigated the effects of Argentine ants on native invertebrates in Australia. This study assessed the effects of Argentine ants on community composition of invertebrates, with particular focus on resident ant communities and functional groups. In this study, the author compared the composition and abundances of invertebrates between invaded and uninvaded locations at four paired sites in Adelaide, South Australia. The results showed that there were significantly fewer non‐Argentine ants at invaded sites than at uninvaded sites. In particular, ants from the two common and widespread genera Iridomyrmex and Camponotus showed decreased abundances at the invaded sites. Multidimensional scaling analyses revealed differences in the composition of ant communities at the invaded and uninvaded sites, with uninvaded sites characterized by a similar native ant species composition, while communities at the invaded sites displayed much greater variability in species composition. These results suggest that the presence of Argentine ants may have a negative effect on particular ant genera and functional groups, with likely disruptions to ecosystem processes.  相似文献   

13.
Argentine ants, Linepithema humile, were attacked by their nestmates following contact with a particular prey item, the brown-banded cockroach, Supella longipalpa. Contact with prey, as brief as 2 min, provoked nestmate aggression. Argentine ants contaminated with hydrocarbons extracted from S. longipalpa also released nestmate aggression behavior similar to that released by the whole prey item, confirming the involvement of hydrocarbons. In contrast to S. longipalpa, little or no nestmate aggression was induced by other ant prey from diverse taxa. A comparison of prey hydrocarbon profiles revealed that all hydrocarbons of S. longipalpa were very long chain components with 33 or more carbons, while other prey had either less, or none, of the very long chain hydrocarbons of 33 carbons or greater. We identified the hydrocarbons of S. longipalpa and some new groups of long chain hydrocarbons of L. humile. The majority of S. longipalpa hydrocarbons were 35 and 37 carbons in length with one to three methyl branches, and closely resembled two previously unidentified groups of compounds from L. humile of similar chain length. The hydrocarbons of S. longipalpa and L. humile were compared and their role in the Argentine ant nestmate recognition is discussed.  相似文献   

14.
1. Ant–plant mutualisms have been the focus of considerable empirical research, but few studies have investigated how introduced ants affect these interactions. Using 2 years of survey data, this study examines how the introduced Argentine ant [Linepithema humile (Mayr)] differs from native ants with respect to its ability to protect the extrafloral nectary‐bearing coast barrel cactus (Ferocactus viridescens) in Southern California. 2. Eighteen native ant species visited cacti in uninvaded areas, but cacti in invaded areas were primarily visited by the Argentine ant. The main herbivore of the coast barrel cactus present at the study sites is a leaf‐footed bug (Narnia wilsoni). 3. Herbivore presence (the fraction of surveys in which leaf‐footed bugs were present on individual cacti) was negatively related to ant presence (the fraction of surveys in which ants were present on individual cacti). Compared with cacti in uninvaded areas, those in invaded areas were less likely to have herbivores and when they did had them less often. 4. Seed mass was negatively related to herbivore presence, and this relationship did not differ for cacti in invaded areas versus those in uninvaded areas. 5. Although the Argentine ant might provide superior protection from herbivores, invasion‐induced reductions in ant mutualist diversity could potentially compromise plant reproduction. The cumulative number of ant species on individual cacti over time was lower in invaded areas and was associated with a shortened seasonal duration of ant protection and reduced seed mass. These results support the hypothesis that multiple partners may enhance mutualism benefits.  相似文献   

15.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

16.
Effects of the invasive Argentine ant, Linepithema humile (Mayr), on a myrmecophilous butterfly, Narathura bazalus (Hewiston), were investigated in the field in western Japan. Larvae of N. bazalus were attended by workers of Argentine ants in invaded parks and of ten native and one cosmopolitan ant species in uninvaded parks. The abundance of eggs and larvae were not significantly different between invaded and uninvaded parks. Pupal weight and parasitized ratio by tachinid flies were also not different between the two types of parks. These results indicate that the role of Argentine ants for the butterfly might be almost equivalent to the native ants.  相似文献   

17.
J. Zee  D. Holway 《Insectes Sociaux》2006,53(2):161-167
Invasive ants often displace native ants, and published studies that focus on these interactions usually emphasize interspecific competition for food resources as a key mechanism responsible for the demise of native ants. Although less well documented, nest raiding by invasive ants may also contribute to the extirpation of native ants. In coastal southern California, for example, invasive Argentine ants (Linepithema humile) commonly raid colonies of the harvester ant, Pogonomyrmex subnitidus. On a seasonal basis the frequency and intensity of raids vary, but raids occur only when abiotic conditions are suitable for both species. In the short term these organized attacks cause harvester ants to cease foraging and to plug their nest entrances. In unstaged, one-on-one interactions between P. subnitidus and L. humile workers, Argentine ants behaved aggressively in over two thirds of all pair-wise interactions, despite the much larger size of P. subnitidus. The short-term introduction of experimental Argentine ant colonies outside of P. subnitidus nest entrances stimulated behaviors similar to those observed in raids: P. subnitidus decreased its foraging activity and increased the number of nest entrance workers (many of which labored to plug their nest entrances). Raids are not likely to be the result of competition for food. As expected, P. subnitidus foraged primarily on plant material (85% of food items obtained from returning foragers), but also collected some dead insects (7% of food items). In buffet-style choice tests in which we offered Argentine ants food items obtained from P. subnitidus, L. humile only showed interest in dead insects. In other feeding trials L. humile consistently moved harvester ant brood into their nests (where they were presumably consumed) but showed little interest in freshly dead workers. The raiding behavior described here obscures the distinction between interspecific competition and predation, and may well play an important role in the displacement of native ants, especially those that are ecologically dissimilar to L. humile with respect to diet. Received 15 July 2005; revised 19 October 2005; accepted 26 October 2005.  相似文献   

18.
The Argentine ant, Linepithema humile, has invaded sites across Africa, Australia, Europe, and North America. In its introduced ranges it eliminates native ants and tends agricultural pests. Few studies have examined the ecology of Argentine ants in their native habitat. This study examined the effects of parasitoid flies, genus Pseudacteon, on the foraging behavior of Argentine ants in part of their native range in southern Brazil. Pseudacteon parasitoids commonly attacked Argentine ants, but not other ant species, in daylight at temperatures above 18°C. Argentine ants abandoned food resources and returned underground in the presence of parasitoids. Parasitoid attack rates diminished as Argentine ants retreated underground. Where parasitoids were present, Argentine ants were abundant at food resources only during times of day when parasitoids were inactive. Where parasitoids were absent, Argentine ants were abundant at food resources throughout the day. Overall, the presence of parasitoids explained observed variation in Argentine ant foraging far better than temperature, although temperature had some effect. The results suggest that Pseudacteon parasitoids inhibit the ability of Argentine ants to gather food resources in their native habitat in Brazil. Received: 11 December 1997 / Accepted: 12 June 1998  相似文献   

19.
To assess the importance of competition in the advance of invasive species, bait stations have been used to determine the dominance hierarchy of a community of native ants in Doñana National Park, southern Spain, and the status of the introduced species Linepithema humile (Argentine ant). Some native species, e.g. Cataglyphis floricola or Camponotus pilicornis, seem to be subordinate, i.e. occupy a low position in the competitive hierarchy; some are dominant (e.g. Pheidole pallidula), and others (e.g. Aphaenogaster senilis) occupy an intermediate position in the hierarchy. The Argentine ant is a competitively dominant species, because of its aggressive behavior and relative abundance. Irrespective of their position in the dominance hierarchy, L. humile and some native species adopt what games theory terms “the bourgeois strategy” during agonistic encounters with other species. Lone workers tend to be submissive in encounters whereas workers in the presence of other colony members are aggressive. L. humile was the only species which aggressively displaced large numbers of ants of other species from the bait. L. humile also expanded its range in the course of the experiment, displacing native species from parts of the study area.  相似文献   

20.
Invasive ants threaten biodiversity, ecosystem services and agricultural systems. This study evaluated a prey‐baiting approach for managing Argentine ants in natural habitat invaded by Argentine ants. Blackmound termites (Amitermes hastatus) were topically exposed to fipronil and presented to Argentine ants (Linepithema humile). In laboratory assays, L. humile colonies were offered fipronil‐treated termites within experimental arenas. The termites were readily consumed, and results demonstrate that a single termite topically treated with 590 ng fipronil is capable of killing at least 500 L. humile workers in 4 days. Field studies were conducted in natural areas invaded by L. humile. Fipronil‐treated termites scattered within experimental plots provided rapid control of L. humile and ant densities throughout the treated plots declined by 98 ± 5% within 21 days. Results demonstrate that the prey‐baiting approach is highly effective against L. humile and may offer an effective alternative to traditional bait treatments. Furthermore, prey‐baiting offers environmental benefits by delivering substantially less toxicant to the environment relative to current control methods which rely on commercial bait formulations and may offer greater target specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号