首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new compound based on the D-π-A concept, where D = dimethylamino-phenyl and A = naphthoic acid, separated by an imine motif, was designed, synthesized and characterized. The spectral, energetics, and structural characteristics of the compound were studied thoroughly theoretically by density functional theory (DFT) in the gas and aqueous phases and experimentally (steady-state absorption) in aqueous media with various degrees of polarity and hydrogen bonding ability. This compound shows high sensitivity to the polarity, basicity and proton affinity of the environment. Based on DFT, TD-DFT and NBO analysis, the compound exists in the ground-state with both intermolecular and intramolecular hydrogen bond conformations in association with the –COOH, with latter isomer calculated to be more stable. Furthermore, structural changes via intermolecular solute–solvent interactions, dictate electronic modifications and spectral changes.
Graphical abstract Acidic and basic sites in DMAMN involved in protonation/deprotonation
  相似文献   

2.
Efficient design of ionic compounds requires a systematic understanding of cation–anion interactions. Weakening of electrostatic attraction is essential to increase the liquid range of the ionic compound and decrease its melting point. Here, we report simulations of the closest-approach cation–anion distances in a variety of ion pairs containing the tetrakis(pentafluorophenyl)borate (TFPB) anion. Small alkali cations (Li+, Na+) penetrate the TFPB core, whereas K+ and larger organic cations do not. In the latter case, the shortest possible distance from the cations to the boron atom of TFPB ranges from 0.50 nm to 0.63 nm. TFPB was shown to be substantially rigid, providing a steric hindrance to thermodynamically efficient cation–anion coordination. Our results prove that TFPB is more efficient for electrostatic charge confinement than the tetraoctylammonium cation, whereas the perfluorophenyl group is more efficient than linear alkyl chains. These simulations will motivate development of TFPB-based ionic liquids with low phase transition points.
Graphical Abstract Ionic configuration of the equilibrated “TFPB + K”system
  相似文献   

3.
Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391–5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100–200 pN range, consistent with published experimental estimates.
Graphical Abstract A single surface-mounted switchable rotaxane
  相似文献   

4.
The factors that explain the competition between intramolecular NO linkage photoisomerization and NO photorelease in five ruthenium nitrosyl complexes were investigated. By applying DFT-based methods, it was possible to characterize the ground states and lowest triplet potential energy surfaces of these species, and to establish that both photoisomerization and photorelease processes can occur in the lowest triplet state of each species. This work highlights the crucial role of the sideways-bonded isomer, a metastable state also known as the MS2 isomer, in the photochemical loss of NO, while the results obtained also indicate that the population of the triplet state of this isomer is compulsory for both processes and show how photoisomerization and photorelease interfere.
Graphical Abstract Illustration of the crucial role of the 3MS2 state in the photoreactivities of ruthenium nitrosyl complexes
  相似文献   

5.
We designed three novel cage energetic anions by introducing ionic bridges containing NΘ, N(OΘ) and N(NΘNO2) into cis-2,4,6,8-tetranitro-1H,5H-2,4,6,8- tetraazabicyclo[3.3.0] octane (bicyclo-HMX or BCMHX). The properties of 21 energetic salts, based on cage anions and ammonium-based cations, were studied by density functional theory (DFT) and volume-based thermodynamics (VBT) calculations. Compared to the parent nonionic BCHMX, most title salts have lower predicted impact sensitivities, higher predicted densities, larger predicted heats of formation (HOFs) and better predicted detonation properties. In particular, 11 energetic salts not only exhibit excellent predicted energetic properties, superior to 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20), but also have lower predicted sensitivity than CL-20. The best salt had a predicted detonation velocity of 10.06 km s?1, a predicted detonation pressure of 48.54 GPa and a predicted sensitivity (h50) of 23.99 cm. By introducing ionic bridges into highly nitrated rings, or modifying the original bridge with ionic bridges, some highly nitrated cage compounds with both excellent performance and low sensitivity can be developed strategically.
Graphical abstract Heats of detonation, detonation velocities, and detonation pressures of salts derived from bicyclo-HMX
  相似文献   

6.
This work reports a detailed DFT study on the generation of trimethylenemethanes (TMMs) from the ring opening of dialkoxymethylenecyclopropane (DMCP), methylenecyclopropanethioacetal (MCPT), and substituted derivatives of DMCP and MCPT, as well as follow-up reactions of the TMMs. The singlet DMCP and MCPT were found to be 51.32 and 53.77 kcal mol?1 more stable than the triplet DMCP and MCPT respectively, corresponding to triplet:singlet population ratios of 1:1038 and 1:1040, respectively, at 25 °C using Boltzmann distribution, implying that the proportion of the triplet species is negligible at 25 °C. The ring-opening reactions occur through singlet transition states with barriers of 40.68 and 42.27 kcal mol?1 for DMCP and MCPT, respectively, and yield TMMs that are very unstable compared to the precursors, with the triplet TMM being far more stable than the singlet. Whereas the singlet TMMs readily undergo cycloaddition reactions with olefins to form five-membered carbocyclic rings, the triplet species do not. The selectivity of the reactions of the DMCP TMMs is very sensitive to temperature; at 25°C, cycloaddition with olefins and ring-closure to form ketenes have very comparable barriers while temperatures above 150 °C favor the exclusive formation of a ketene followed by dimerization. In MCPT, ring closure to form ketenes is the favored reaction at all temperatures studied.

Graphical abstract

Pathways for the generation of trimethylenemethanes from their precursors and follow-up reactions
  相似文献   

7.
Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of ?0.82 eV and ?0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of ?1.52 eV and ?1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism.
Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers
  相似文献   

8.
In this article, we explore, both theoretically and experimentally, the general reactivity of alkyl hydrogeno-phenylphosphinates with alcohols. We show that alcohol molecules act exclusively as nucleophilic species, and add to alkyl hydrogeno-phenylphosphinates, leading to pentacoordinated intermediates. These intermediates are shown to subsequently competitively undergo alcohol eliminations and/or Berry pseudorotations. This offers several possible routes for racemizations and/or alcohol exchange reactions. Transition standard Gibbs free energies predicted from DFT calculations for the overall alcohol exchange mechanism are shown to be compatible with those experimentally measured in case ethanol reacts with ethyl hydrogeno-phenylphosphinate (134.5~136.0 kJ mol?1 at 78 °C).
Graphical abstract ?
  相似文献   

9.
10.
Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen–halogen contacts and hydrogen bonds (I?N, I?F, I?I, F?F, I?H and F?H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of ?9.58 kcal mol?1 and ?7.10 kcal mol?1 observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen–halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures.
Graphical Abstract Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.
  相似文献   

11.
In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (?OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol?1. Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO3 elimination, the simultaneous addition of two ?OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs.
Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses
  相似文献   

12.
The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO?→?LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO?→?LUMO?+?1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl- and a cation in its S1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak.
Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.
  相似文献   

13.
Hyaluronan lyase from Streptococcus pneumoniae can degrade hyaluronic acid, which is one of the major components in the extracellular matrix. Hyaluronan can regulate water balance, osmotic pressure, and act as an ion exchange resin. Followed by our recent work on the catalytic reaction mechanism and substrate binding mode, we in this work further investigate the functional role of active site arginine residue, R462, in the degradation of hyaluronan. The site directed mutagenesis simulation of R462A and R462Q were modeled using a combined quantum mechanical and molecular mechanical method. The overall substrate binding features upon mutations do not have significant changes. The energetic profiles for the reaction processes are essentially the same as that in wild type enzyme, but significant activation barrier height changes can be observed. Both mutants were shown to accelerate the overall enzymatic activity, e.g., R462A can reduce the barrier height by about 2.8 kcal mol–1, while R462Q reduces the activation energy by about 2.9 kcal mol–1. Consistent with the active site model calculated using density functional theory, our results can support that the positive charge on R462 guanidino side chain group plays a negative role in the catalysis. Finally, the functional role of R462 was proposed to facilitate the formation of initial enzyme-substrate complex, but not in the subsequent catalytic degradation reaction.
Graphical Abstract Degradation of hyaluronan catalyzed by hyaluronate lyase from Streptococcus pneumoniae
  相似文献   

14.
A post-calculation correction is established for PM7 band gaps of transition-metal oxides. The correction is based on the charge on the metal cation of interest, as obtained from MOPAC PM7 calculations. Application of the correction reduces the average error in the PM7 band gap from ~3 eV to ~1 eV. The residual error after correction is shown to be uncorrelated to the Hartree–Fock method upon which PM7 is based.
Graphical Abstract Comparison between calculated band gaps and experimental band gaps for binary oxides. The orange crosses are for corrected PM7 band gaps. Blue squares are uncorrected values. The orange crosses fall closer to the diagonal dashed line, showing an overall improvement of the accuracy of calculated values
  相似文献   

15.
The activation of human epidermal growth factor receptor (hEGFR) involves a large conformational change in its soluble extracellular domains (sECD, residues 1–620), from a tethered to an extended conformation upon binding of ligands, such as EGF. It has been reported that this dynamic process is pH-dependent, that is, hEGFR can be activated by EGF at high pH to form an extended dimer but remains as an inactive monomer at low pH. In this paper, we perform all-atom molecular dynamics (MD) simulations starting from the tethered conformation of sECD:EGF complex, at pH 5.0 and 8.5, respectively. Simulation results indicate that sECD:EGF shows different dynamic properties between the two pHs, and the complex may have a higher tendency of activation at pH 8.5. Twenty residues, including 13 histidines, in sECD:EGF have different protonation states between the two pHs (calculated by the H++ server). The charge distribution at pH 8.5 is more favorable for forming an extended conformation toward the active state of sECD than that at pH 5.0. Our study may shed light on the mechanism of pH dependence of hEGFR activation.
Graphical abstract pH dependence of ligand-induced human epidermal growth factor receptor activation
  相似文献   

16.
A mechanistic investigation using Becke3LYP density functional theory (DFT) was carried out on the palladium-catalyzed amidition of bromobenzene and tBu-isocyanide. The whole catalytic cycle consists of five steps: oxidative addition, migratory insertion, anion exchange, reductive elimination, and hydrogen migration. The rate-determining step is oxidative addition, with a small Gibbs free energy of 14.6 kcal mol?1. In the migratory insertion step, tBu-isocyanide provides an important source of carboxy and amino groups to establish the amide group. For anion exchange, path 1a is suggested as the most favorable pathway with the help of the base, and water provides a source of oxygen which is perfectly in line with experimental observations. Finally, in the hydrogen migration step, we illustrate that the six-membered ring path is energetically favored due to the assisting influence of water. In addition, our calculations indicate that using dimethyl sulfoxide as a solvent does not change the rate-determining step.
Graphical Abstract Palladium-catalyzed amidation
  相似文献   

17.
Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II and degrades bradykinin and other vasoactive peptides. ACE inhibitors are used to treat diseases such as hypertension and heart failure. It is thus highly desirable to understand the catalytic mechanism of ACE, as this should facilitate the design of more powerful and selective ACE inhibitors. ACE exhibits two different active domains, the C-domain and the N-domain. In this work, we systematically investigated the inhibitor- and substrate-binding patterns in the N-domain of human ACE using a combined quantum mechanical and molecular mechanical approach. The hydrolysis of hippuryl–histidyl–leucine (HHL) as catalyzed by the N-domain of human somatic ACE was explored, and the effects of chloride ion on the overall reaction were also investigated. Two models, one with and one without a chloride ion at the first binding position, were then designed to examine the chloride dependence of inhibitor–substrate binding and the catalytic mechanism. Our calculations indicate that the hydrolysis reaction follows a stepwise general base/general acid catalysis path. The estimated mean free energy barrier height in the two models is about 15.6 kcal/mol, which agrees very well with the experimentally estimated value of 15.8 kcal/mol. Our simulations thus suggest that the N-domain is in a mixed form during ACE-catalyzed hydrolysis, with the single-chloride-ion and the double-chloride-ion forms existing simultaneously.
Graphical Abstract Superposition of ACE C- and N- domains
  相似文献   

18.
Performance of 18 DFT functionals (B1B95, B3LYP, B3PW91, B97D, BHandHLYP, BMK, CAM-B3LYP, HSEh1PBE, M06-L, mPW1PW91, O3LYP, OLYP, OPBE, PBE1PBE, tHCTHhyb, TPSSh, wB97xD, VSXC) in combinations with six basis sets (cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, IGLO-II, and IGLO-III) and three methods for calculating magnetic shieldings (GIAO, CSGT, IGAIM) was tested for predicting 1H and 13C chemical shifts for 25 organic compounds, for altogether 86 H and 88 C atoms. Proton shifts varied between 1.03 ppm to 12.00 ppm and carbon shifts between 7.87 ppm to 209.28 ppm. It was found that the best method for calculating 13C shifts is PBE1PBE/aug-cc-pVDZ with CSGT or IGAIM approaches (mae?=?1.66 ppm), for 1H the best results were obtained with HSEh1PBE, mPW1PW91, PBE1PBE, CAM-B3LYP, and B3PW91 functionals with cc-pVTZ basis set and with CSGT or IGAIM approaches (mae?=?0.28 ppm). We found that often larger basis sets do not give better results for chemical shifts. The best basis sets for calculating 1H and 13C chemical shifts were cc-pVTZ and aug-cc-pVDZ, respectively. CSGT and IGAIM NMR approaches can perform really well and are in most cases better than popular GIAO approach.
Graphical Abstract Mean absolute errors for 1H and 13C chemical shifts and computational times of neutral toluene molecule with aug-cc-pVDZ basis set and CSGT approach
  相似文献   

19.
Vitamin C is one of the most abundant exogenous antioxidants in the cell, and it is of the utmost importance to elucidate its mechanism of action against radicals. In this study, the reactivity of vitamin C toward OH and \( {HO}_2/{O}_2^{-} \) radicals in aqueous medium was analyzed by ab initio molecular dynamics using CPMD code. The simulations led to results similar to those of static studies or experiments for the pair of \( {HO}_2/{O}_2^{-} \) radicals but bring new insights for the reactivity with hydroxyl radical: the reaction takes place before the formation of an adduct and consists of two steps: first an electron is transferred to hydroxyl radical and then the ascorbyl radical loses a proton.
Graphical Abstract Reactivity of vitamin C toward hydroxyl and \( {HO}_2/{O}_2^{-} \) radicals
  相似文献   

20.
The ternary complexes ML???PyZX2???NH3 (ML?=?CuCl, CuCN, AgCN, and AuCN; Z?=?P, As, and Sb; X?=?H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML???PySbH2???NH3, ML???PyAsF2???NH3, and ML???PySbF2???NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.
Graphical Abstract The pnicogen bond is strengthened by the coordinaiton bond
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号