首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Uruguay, aeromycological studies are restricted to a gravimetric analysis performed from December 1942 to March 1944 in Montevideo where spores of Pucciniaceae, Alternaria and Helminthosporium were the only specimens identified. Daily monitoring of airborne fungal spores was carried out for the first time in Montevideo, from April 2012 to March 2014, using a Rotorod sampler in order to evaluate the seasonal variation and influence of meteorological parameters. A total of 548,309.68 spores/m3 were recorded which belong to anamorphs of Higher Fungi (69.18 %), Phyla Ascomycota (12.62 %), Basidiomycota (8.01 %), Oomycota (0.37 %) and Myxomycota (0.06 %). Airborne spores occurred in Montevideo throughout the whole year. However, a seasonal pattern was revealed, with the highest concentrations recorded in autumn and summer. The most abundant spore types were Cladosporium (53.22 %), Alternaria (6.62 %), Didymella Group (5.86 %), Leptosphaeria Group (4.37 %) and Coprinus (4.3 %). Temperature appeared to be the most influential meteorological factor correlating significantly and positively with total spore, Cladosporium, Alternaria and Didymella Group abundance. Relative humidity influenced positively total spore, Cladosporium and Didymella Group concentrations while a weak negative association was obtained for Alternaria. Wind speed correlated negatively with total spore, Cladosporium, Alternaria and Didymella Group. Precipitation showed a negative influence on Alternaria, while positive correlations were observed for Didymella Group. For the first time, fungal spores considered allergenic were recorded in Montevideo atmosphere and the risk of exposure would have been high from December to June. However, long-term sampling is needed to define seasonal prevalence patterns and the influence of meteorological conditions on spore abundance.  相似文献   

2.
Seven years of aeromycological study was performed in the city of Funchal with the purpose to determine the anamorphic spore content of this region and its relationship to meteorological factors. The sampling was carried out with a Hirst-type volumetric spore trap following well-established guidelines. A total of 17,586 anamorphic fungal spores were recorded during the studied period, attaining an annual average concentration of 2931 spores m?3. Anamorphic fungal spores were observed throughout the year, although the major peaks were registered during spring (April–June) and autumn period (September–November). The lowest spore levels were recorded between December and February months. Over 14 taxa of anamorphic fungal spores were observed with Cladosporium being the most prevalent fungal type accounting for 78 % of the total conidiospores. The next in importance was Alternaria (5.4 %), Fusarium (4.7 %), Torula (3.9 %) and Botrytis (1.9 %). Temperature was the meteorological parameter that favoured the most release and dispersal of the conidiospores, whereas rainfall revealed a negative effect. Despite the low concentration levels found in our region, the majority of the fungal types identified are described as potential aeroallergens. This study provides the seasonal variation of the conidiospores and the periods when the highest counts may be expected, representing a preventive tool in the allergic sensitization of the population.  相似文献   

3.
Present investigation was undertaken to study the dynamics of relationships between atmospheric fungal spores and meteorological factors in western Romania. The airborne spore sampling was carried out by employing volumetric sampling. A total of nine meteorological parameters were selected for this investigation. During 2008–2010, it was found the same pattern of behaviour in the atmosphere for selected spore types (Alternaria, Cladosporium, Pithomyces, Epicoccum and Torula). The spores occurred in the air throughout the whole year, but maximum concentrations were reached in summer. Cladosporium and Alternaria peak levels were observed in June. Epicoccum peak value was found in September. The relationships between airborne spore concentrations and environmental factors were assessed using the analysis of Spearman’s rank correlations and multiple linear regressions. Spearman’s rank correlation analysis revealed that maximum, minimum and mean temperature, and number of sunshine hours were strongly (p < 0.01) and directly proportional to the concentration of all analysed fungal spores. Negative and significant correlations were with daily mean relative humidity. The variance explained percentage by regression analyses varied between 30.6 and 39.6 % for Alternaria and Cladosporium airborne spores. Statistical methods used in this study are complementary and confirmed stable dependence of Alternaria and Cladosporium spore concentrations on meteorological factors. The climate change parameters either increased temperatures, changed precipitation regimes or a combination of both affected allergenic fungal spore concentrations in western Romania. This study demonstrates the need for investigations throughout the year, from month to month, regarding the correct interpretation of airborne spore relationships with meteorological parameters.  相似文献   

4.
Ascospores are frequently found as airborne fungal spores and recognized in various areas as an important cause of respiratory allergies. The main objective of the study was to determine the relationship between airborne ascospores and meteorological parameters using multivariate canonical correspondence analysis (CCA) and Spearman correlation. The aerobiological monitoring of fungal spores was performed over 5 years (2009–2013) using a Burkard volumetric spore traps. Seven main types of ascospores were identified: Leptosphaeria, Pleospora, Venturia, Diatrype, Chaetomium, Sporormiella and Ascobolus. The CCA results showed that all applied variables accounted for 27.4 % of the total variance in the spore data in the 5 years. The largest contribution to the total variance was explained in this period by the maximum air temperature (10.3 %). The effect of meteorological factors varied among years. The highest values of the total variance in the spore data, explained by the statistically significant variables, were observed in 2012 (28.6 %), with the highest contribution to minimum relative humidity (8.0 %). Most ascospores showed positive and statistically significant correlation with relative humidity and rainfall. In contrast, ascospores of Chaetomium were negatively correlated with precipitation and the relative humidity and positively with temperature. Based on these results, epidemiological and allergological studies must deserve more attention to estimate the allergenic potential of the ascospores.  相似文献   

5.
Fungal spores of Alternaria and Cladosporium are ubiquitous components of both indoor and outdoor air samples and are the main causes of human respiratory allergies. Monitoring these airborne fungal spores during 2009–2014 was carried out by means of Hirst-type spore trap to investigate their airborne spore concentrations with respect to annual load, seasonality and overall intradiurnal pattern. Alternaria and Cladosporium spores are present throughout the year in the atmosphere of Tétouan, although they show seasonal variations. Despite important differences between years, their highest levels presented a first peak during spring and a higher second peak in summer or autumn depending on the year. The spore concentrations were homogeneously distributed throughout the day with slight increase of 7.6 and 3.7% on average between 12–14 and 14–16 h for Alternaria and Cladosporium, respectively. The borderline of 3000 sp/m3 of Cladosporium linked to the occurrence of allergic diseases was exceeded between 13 and 31 days. Airborne spores of Alternaria overcame the threshold value of 100 sp/m3 up to 95 days, suggesting that Cladosporium and Alternaria could be clinically significant aeroallergens for atopic patients.  相似文献   

6.
This study determined annual and monthly fluctuations in concentration of 20 fungal genera. The selection of taxa was made based upon their high frequency in the air as well as their well-known allergenic properties. Air samples were collected using a spore trap of Hirst design at an urban site where the trap continuously worked throughout a 5-year survey. Weather data were acquired from a meteorological station co-located with the air sampler. Influence of several meteorological parameters was then examined to reveal species–environment interactions and the potential location of fungal spore sources within the urban area. The maximum monthly sum of mean daily spore concentration varied between genera, and the earliest peaks were recorded for Pleospora sp. in April and Ustilago sp. in June. However, the majority of investigated spore types occurred in the greatest concentrations between August and September. Out of the 20 studied taxa, the most dominant genus was Cladosporium sp., which exceeded an allergenic threshold of 3000 s m?3 40 times during very rainy years and twice as much during dry years. A Spearman’s rank test showed that statistically significant (p ≤ 0.05) relationships between spore concentration and weather parameters were mainly r s  ≤ 0.50. Potential sources of spores at Worcester were likely to be localised outside the city area.  相似文献   

7.
The impact of climate change on fungal growth and spore production is less well documented than for allergenic pollen grains, although similar implications for respiratory tract diseases in humans occur. Fungal spores are commonly described as either “dry” or “wet” according to the type of weather associated with their occurrence in the air. This study examined the distribution of selected fungal spores (Alternaria spp., Cladosporium spp., Didymella spp., Epicoccum spp., Leptosphaeria spp. and rusts) occurring in the West Midlands of UK during 2 years of contrasting weather. Spore specimens were collected using a 7-day volumetric air sampler and then analysed with the aid of light microscopy. Distributions of spores were then studied using normality tests and Mann–Whitney U test, while relationships with meteorological parameters were investigated using Spearman’s rank test and angular-linear correlation for wind direction analysis. Our results showed that so-called wet spores were more sensitive to the weather changes showing statistically significant differences between the 2 years of study, in contrast to “dry” spores. We predict that in following years we will observe accelerated levels in allergenic fungal spore production as well as changes in species diversity. This study could be a starting point to revise the grouping system of fungal spores as either “dry” or “wet” types and their response to climate change.  相似文献   

8.
Introduction Fungal spores constitute an important fraction of bioaerosols in the atmosphere. Objectives To analyse the content of Alternaria and Cladosporium spores in the atmosphere of Beja and the effect of meteorological conditions on their concentrations. Methodology The daily and hourly data of Alternaria and Cladosporium fungal spores concentration in the atmosphere of Beja were monitored from April 12, 2012 to July 30, 2014, based on the Portuguese Aerobiology Network methodology. The influence of meteorological conditions on the studied types of fungal spore concentrations was assessed through Spearman’s correlation analysis. Results During the study period, 20,741 Alternaria spores and 320,862 Cladosporium spores were counted. In 2013, there were 5,822 Alternaria spores and 123,864 Cladosporium spores. The absolute maximum concentrations of Alternaria and Cladosporium spores were recorded on November 8, 2013, with 211 and 1301 spores/m3, respectively. Temperature, insolation and wind direction parameters showed a positive correlation with Alternaria and Cladosporium spore levels, while relative humidity and precipitation presented a negative correlation, which is statistically significant. Wind speed only showed a statistically significant positive correlation in terms of Alternaria spore levels. Conclusion Alternaria and Cladosporium spores are present in the atmospheric air of Beja throughout the year, with the highest concentration period occurring during spring and autumn. There was a clear effect of meteorological parameters on airborne concentrations of these fungal spores.  相似文献   

9.
Information about airborne fungal spore is crucial for health risk assessment and management, especially for patients with allergy and asthma. Nonetheless, such data are rarely available from certain areas of the world, including Southeast Asia. The aim of this study was to gain updated information about airborne fungal spore in Bangkok, the capital city of Thailand. A survey was conducted at five sampling sites in Bangkok, using the Rotorod Sampler® for a period of 1 year. High concentrations of spores were found all year with the peak between August and November. The most prominent spore types were Cladosporium, Nigrospora, Puccinia, Aspergillus/Penicillium, and Fusarium. The spore concentrations were positively and significantly correlated with the amount of rainfall and relative humidity, reaching the maximum level in September. Sensitization rates to Cladosporium, Penicillium, and Aspergillus among Thai atopic patients were approximately 16.6, 13.6, and 13.0%, respectively.  相似文献   

10.
This study determined the relationship between airborne concentration of Cladosporium spp. spores and wind speed and direction using real data (local wind measured by weather station) and modelled data (air mass flow computed with the aid of HYbrid Single Particle Lagrangian Trajectory model). Air samples containing fungal conidia were taken at an urban site (Worcester, UK) for a period of five consecutive years using a spore trap of the Hirst design. A threshold of ≥6000 s m?3 (double the clinical value) was applied in order to select high spore concentration days, when airborne transport of conidia at a regional scale was more likely to occur. Collected data were then examined using geospatial and statistical tools, including circular statistics. Obtained results showed that the greatest numbers of spore concentrations were detected in July and August, when C. herbarum, C. cladosporioides and C. macrocarpum sporulate. The circular correlation test was found to be more sensitive than Spearman’s rank test. The dominance of either local wind or the air mass on Cladosporium spore distributions varied between examined months. Source areas of this pathogen had an origin within the UK territory. Very high daily mean concentrations of Cladosporium spores were observed when daily mean local wind speed was v s ≤ 2.5 m s?1 indicating warm days with a light breeze.  相似文献   

11.
Alternaria and Cladosporium spores belong to the most frequent and allergenic particles in bioaerosol in the temperate climate. The investigation of Alternaria and Cladosporium spore concentrations was performed in two cities in Poland, Szczecin and Cracow, in 2004–2013. The meteorological parameters taken to assess their impact on fungal spores were average, maximum and minimum temperature, relative humidity and average wind velocity. In order to reveal whether changes in dynamics of spore seasons are driven by meteorological conditions, ordination methods were applied. Canonical correspondence analysis was used to explore redundancy among the predictors (meteorological parameters). Prior to ordination analyses, the data were log(x)-transformed. Concentrations of Alternaria and Cladosporium spores were significantly higher in Szczecin comparing to Cracow, but it was also observed the decreasing trend in the spore concentrations in Szczecin. As regards temperature, it was higher in Cracow and was still increasing in the studied years. Relative humidity and wind velocity were significantly lower in Cracow. In Szczecin meteorological conditions did not explain changes in spore season characteristics (insignificant redundancy analysis models), while in Cracow’s redundancy analysis models indicated that spore season parameters were in over 40 % determined by meteorological conditions, mainly air temperature and wind velocity. If they increase, the peak value, total number of spores and their average concentrations in a season will also increase.  相似文献   

12.
This paper is the first aero-mycological report from Demänovská Ice Cave. Fungal spores were sampled from the internal and external air of the cave in June, 2014, using the impact method with a microbiological air sampler. Airborne fungi cultured on PDA medium were identified using a combination of classical phenotypic and molecular methods. Altogether, the presence of 18 different fungal spores, belonging to 3 phyla, 9 orders and 14 genera, was detected in the air of the cave. All of them were isolated from the indoor samples, and only 9 were obtained from the outdoor samples. Overall, airborne fungal spores belonging to the genus Cladosporium dominated in this study. However, the spores of Trametes hirsuta were most commonly found in the indoor air samples of the cave and the spores of C. herbarum in the outdoor air samples. On the other hand, the spores of Alternaria abundans, Arthrinium kogelbergense, Cryptococcus curvatus, Discosia sp., Fomes fomentarius, Microdochium seminicola and T. hirsuta were discovered for the first time in the air of natural and artificial underground sites. The external air of the cave contains more culturable airborne fungal spores (755 colony-forming units (CFU) per 1 m3 of air) than the internal air (from 47 to 273 CFU in 1 m3), and these levels of airborne spore concentration do not pose a threat to the health of tourists. Probably, the specific microclimate in the cave, including the constant presence of ice caps and low temperature, as well as the location and surrounding environment, contributes to the unique species composition of aeromycota and their spores in the cave. Thus, aero-mycological monitoring of underground sites seems to be very important for their ecosystems, and it may help reduce the risk of fungal infections in humans and other mammals that may arise in particular due to climate change.  相似文献   

13.
During an arbuscular mycorrhiza fungal spore survey on a primary coastal sand-dune system in Goa on the west coast of India, entrophosporoid spores tightly covered with a dense hyphal mantle were recovered. When intact, the spores, at first sight, seemed to be identical in morphology to those of Sacculospora baltica (originally described as Entrophospora baltica) extracted from Polish maritime sand dunes and, to date, the sole member of the recently described genus Sacculospora in the new family Sacculosporaceae, phylum Glomeromycota. Later detailed morphological studies indicated that both fungi produce two-walled spores but the structure and phenotypic features of components of the outer spore wall in the novel fungus differ considerably from those of S. baltica. Differences between the fungi were subsequently confirmed in the phylogenetic analysis of SSU–ITS–LSU nrDNA sequences. Consequently, we describe the novel species as Sacculospora felinovii sp. nov.  相似文献   

14.

Objectives

To achieve consecutive conversion from creatinine to urea and sarcosine using creatininase and creatinase encapsulated in spores of Saccharomyces cerevisiae.

Results

Creatininase encapsulated into the spore wall was produced and its specific activity was 3.4 ± 0.4 U/mg. By deletion of OSW2 gene, which causes a mild spore wall defect, the activity was increased to 10.9 ± 0.5 U/mg. Compared with soluble enzymes, spore-encapsulated creatininase was tolerant to environmental stresses; creatininase encapsulated in osw2? spores retained more than 90 % of the activity after treatment by SDS or proteinase K. Creatinase capsules could also be produced through spore encapsulation. The mixture of spores containing either creatininase or creatinase could mediate a two-step reaction to produce urea from creatinine; 5 mg spores produced 19 µmol urea in 10 min. Spores co-expressing creatininase and creatinase could also mediate the reactions more efficiently than the mixture of spores individually expressing each enzyme; the yield in 10 min was 38 µmol.

Conclusions

Yeast spores can hold creatininase and creatinase simultaneously and catalyze the consecutive reactions.
  相似文献   

15.
Ferns reproduce through small and usually haploid spores. The general paradigm states that whereas species produce good shaped spores, hybrids are sterile and form aborted spores. Apomictic fern species represent an unusual case, and it is believed that they produce an unbalanced spore spectrum. Until now, no comprehensive comparison of sexual and apomictic taxa using extensive spore fitness data has been published. Based on a representative data set of 109 plants from 23 fern taxa, we accomplished the first robust analysis of spore fitness using spore abortion index (SAI), the ratio of aborted to all examined spores. One thousand spores were analyzed for each plant. Focusing mainly on two major European fern taxa (Asplenium, Dryopteris), we compared this trait for different fern reproductive types (sexual/apomicts/hybrids) and ploidy levels (diploid versus polyploid). Our results confirmed the general assumption that shows higher SAI for apomictic taxa (18%) when compared to sexual taxa (3%). Furthermore, hybrids are characterized by having almost all spores aborted (99.8%) with the notable exception of pentaploid Dryopteris × critica (93.1%), the hybrid between sexual and apomictic taxa. We found no significant difference in SAI between sexual taxa of various ploidy levels or between sexual taxa of genera Dryopteris and Asplenium. Additionally, we carried out an optimization of the SAI method, outlying important guidelines for the use of this method in the future.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21 % of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9 %. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2–7.7, while it ranged from 25.8–48 to 35.6–53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2 %). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.  相似文献   

17.
The aim of this paper was to make a first approximation of the fungal spore airborne content in Valladolid along the year, constructing the first spore calendar for the middle-west of Spain. So that, we monitored the city during 2005 and 2006, being Cladosporium the most abundant type, present all over the year (together with Pleospora). The greatest atmospheric spore diversity was observed in April in contrast with February. The intra-diurnal pattern for Alternaria, Cladosporium and Dreschlera was very similar with an hourly concentration percentage decreasing along two periods, whereas Coprinus, Ganoderma and Periconia showed a clearly nocturnal pattern. The meteorological parameter that most influenced airborne spore concentrations was temperature, significantly and positively in the case of dry-air spores but negatively for wet-air spores.  相似文献   

18.
The ambient atmosphere is dominated with pollen and spores, which trigger allergic reactions and diseases and impact negatively on human health. A survey of pollen and fungal spores constituents of the atmosphere of Garki, Abuja (North-Central Nigeria) was carried out for 1 year (June 1, 2011–May 31, 2012). The aim of the study was to determine the prevalence and abundance of pollen and fungal spores in the atmosphere and their relationship with meteorological parameters. Airborne samples were trapped using modified Tauber-like pollen trap, and the recipient solutions were subjected to acetolysis. Results revealed the abundance of fungal spores, pollen, fern spores, algal cysts and diatoms in decreasing order of dominance. The atmosphere was qualitatively and quantitatively dominated by pollen during the period of late rainy/harmattan season than the rainy season. Numerous fungal spores were trapped throughout the sampling periods among which Alternaria spp., Fusarium spp., Cladosporium spp. and Curvularia spp. dominated. These fungi have been implicated in allergic diseases and are dermatophytic, causing diverse skin diseases. Other pathogenic fungi found in the studied aeroflora were Dreschlera spp., Helminthosporium spp., Torula spp., Pithomyces spp., Tetraploa spp., Nigrospora ssp., Spadicoides spp., Puccinia spp. and Erysiphe graminis. Total pollen and fungal spores counts do not show significant correlation with meteorological parameters.  相似文献   

19.
Rhizoglomus venetianum, a new arbuscular mycorrhizal fungal species, has been isolated and propagated from a heavy metal-contaminated site in Sacca San Biagio island, downtown Venice, Italy. Interestingly, under the high levels of heavy metals occurring in the site, the new fungus was able to grow only intraradically. In greenhouse trap and single species cultures under low heavy metal levels, the fungus produced innumerous spores, clusters, and sporocarps extraradically, which were formed terminally on subtending hyphae either singly, in small spore clusters, or, preferably, in loose to compact non-organized sporocarps up to 2500?×?2000?×?2000 μm. Spores are golden-yellow to bright yellow brown, globose to subglobose to rarely oblong, 75–145?×?72–140 μm in diameter, and have four spore wall layers. Morphologically, the new fungus is similar to R. intraradices, and phylogenetically, it forms a monophyletic clade next to R. irregulare, which generally forms irregular spores and lacks, like R. intraradices, the flexible innermost wall layer beneath the structural/persistent third wall layer. A key for the species identification is presented comprising all 18 Rhizoglomus species, so far described or newly combined.  相似文献   

20.
The inactivation of four micromycete species by action of non-thermal plasma was followed. Two sources of plasma were compared, namely, positive corona discharge and dielectric barrier discharge. The corona discharge appeared as suitable for fungal spore inactivation in water suspension, whereas the barrier discharge inactivated spores on the surface of cultivation agar. Cladosporium sphaerospermum was the most sensitive, being inactivated within 10 min of exposure to plasma, whereas Aspergillus oryzae displayed decrease in viable cell count only, the complete inactivation was not achieved even after 40 min of exposure. Intermediate sensitivity was found for Alternaria sp. and Byssochlamys nivea. The significant delay of growth was observed for all fungi after exposure to sublethal dose of plasma, but we failed to express this effect quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号