首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
E. M. Rinchik  R. R. Tonjes  D. Paul    M. D. Potter 《Genetics》1993,135(4):1107-1116
Deletion mutations at the albino (c) locus have been useful for continuing the development of fine-structure physical and functional maps of the Fes-Hbb region of mouse chromosome 7. This report describes the molecular analysis of a number of radiation-induced c deletions that, when homozygous, cause death of the embryo during preimplantation stages. The distal extent of these deletions defines a locus, pid, (preimplantation development) genetically associated with this phenotype. The proximal breakpoints of eight of these deletions were mapped with respect to the Tyr (tyrosinase; albino) gene as well as to anonymous loci within the Fah-Tyr region that are defined by the Pmv-31 viral integration site and by chromosome-microdissection clones. Rearrangements corresponding to the proximal breakpoints of two of these deletions were detected by Southern blot analysis, and a size-altered restriction fragment carrying the breakpoint of one of them was cloned. A probe derived from this deletion fusion fragment defines a locus, D7Rn6, which maps within (or distal to) the pid region, and which discriminates among the distal extents of deletions eliciting the pid phenotype. Extension of physical maps from D7Rn6 should provide access both to the pid region and to loci mapping distal to pid that are defined by N-ethyl-N-nitrosourea-induced lethal mutations.  相似文献   

2.
E. M. Rinchik  D. A. Carpenter    C. L. Long 《Genetics》1993,135(4):1117-1123
As part of a long-term effort to refine the physical and functional maps of the Fes-Hbb region of mouse chromosome 7, four loci [l(7)1Rn, l(7)2Rn, l(7)3Rn, l(7)4Rn] defined by N-ethyl-N-nitrosourea (ENU)-induced, prenatally lethal mutations were mapped by means of trans complementation crosses to mice carrying lethal deletions of the mouse chromosome-7 albino (c) locus. Each locus was assigned to a defined subregion of the deletion map at the distal end of the Fes-Hbb interval. Of particular use for this mapping were preimplantation-lethal deletions having distal breakpoints localized between pid and Omp. Hemizygosity or homozygosity for each of the ENU-induced lethals was found to arrest development after uterine implantation; the specific time of postimplantation death varied, and depended on both the mutation itself and on whether it was hemizygous or homozygous. Based on their map positions outside of and distal to deletions that cause death at preimplantation stages, these ENU-induced mutations identify loci, necessary for postimplantation development, that could not have been discovered by phenotypic analyses of mice homozygous for any albino deletion. The mapping of these loci to specific genetic intervals defined by deletion breakpoints suggests a number of positional-cloning strategies for the molecular isolation of these genes. Phenotypic and genetic analyses of these mutations should provide useful information on the functional composition of the corresponding segment of the human genome (perhaps human 11q13.5).  相似文献   

3.
Chromosomal deficiencies are a useful genetic tool in fine-scale genetic mapping and the integration of physical and visible marker genetic maps. Viable overlapping deficiencies may permit gene cloning by subtractive procedures and provide a means of analyzing the functional importance of different chromosomal regions. A method is described for isolation of deficiencies in the Arabidopsis genome which encompass specific loci and other extended chromosomal regions. The technique employs pollen mutagenized by γ-irradiation to pollinate marker lines homozygous for recessive mutations. Deficiencies at specific loci were detected by screening for marker phenotypes in the F(1). Screening for lethal mutations in the F(1)/F(2) confirmed specific deficiencies and revealed other deficiencies that did not overlap the marker loci. Further evidence for such mutations was provided by distorted F(2) segregation of the chromosomal markers linked to putative deficiencies. Maintainable (transmissible) and non-transmissible deficiencies were demonstrated by their pattern of inheritance in subsequent generations.  相似文献   

4.
E. M. Rinchik 《Genetics》1994,137(3):855-865
Numerous new mutations at the brown (b) locus in mouse chromosome 4 have been recovered over the years in germ-cell mutagenesis experiments performed at the Oak Ridge National Laboratory. A large series of radiation- and chemical-induced b mutations known to be chromosomal deletions, and also known to be prenatally lethal when homozygous, were analyzed by pairwise complementation crosses as well as by pseudodominance tests involving flanking loci defined by externally visible phenotypes. These crosses were designed to determine the extent of each deletion on the genetic and phenotype map of the chromosomal region surrounding the b locus; the crosses also provided basic data that assigned deletions to complementation groups and defined four new loci associated with aberrancies in normal development. Specifically, the pseudodominance tests identified deletions that include the proximally mapping whirler (wi) and the distally mapping depilated (dep) genes, thereby bracketing these loci defined by visible developmental abnormalities with landmarks (deletion breakpoints) that are easily identified on the physical map. Furthermore, the complementation crosses, which were supplemented with additional crosses that allowed determination of the gross time of lethality of selected deletions, defined four new loci required for normal development. Homozygous deletion of one of these loci (b-associated fitness, baf) results in a runting syndrome evident during postnatal development; deletion of one locus [l(4)2Rn] causes death in the late gestation/neonatal period; and deletion of either of two loci [l(4)1Rn or l(4)3Rn] results in embryonic death, most likely in pre-, peri- or postimplantation stages. The placement of these new functionally defined loci on the evolving molecular map of the b region should be useful for continuing the analysis of the roles played in development by genes in this segment of chromosome 4.  相似文献   

5.
There is considerable controversy in the literature concerning the nature of X-ray-induced specific-locus mutations in various experimental organisms. To investigate this problem in Neurospora crassa a series of experiments (Webber and de Serres, 1965) was performed to study the induction-kinetics of X-ray-induced mutation in the adenine-3 (ad-3) region of a two-component heterokaryon (H-12). Subsequent genetic analyses (de Serres, 1989a,b,c, 1990a), on a series of 832 mutants recovered in these experiments, have shown that 3 different classes of ad-3 mutants were recovered, namely gene/point mutations, multilocus deletions and multiple-site mutations. Complementation studies with a series of genetic markers that define 21 genetic loci in the ad-3 and immediately adjacent genetic regions have shown that ad-3 mutants classified as multilocus deletions result from the inactivation of a series of loci in the ad-3 and immediately adjacent regions of Linkage Group I, whereas multiple-locus mutations result from combinations of gene/point mutations and multilocus deletions. Analysis of the induction kinetics of these 3 different classes, after completion of the genetic characterization of all mutants (de Serres, 1990b) demonstrated that gene/point mutations increase linearly with X-ray dose, whereas multilocus deletions and multiple-site mutations increase as the square of X-ray dose. Further analysis of allelic complementation among the gene/point mutations at the ad-3B locus (de Serres, 1990c), demonstrated that the spectrum of complementation patterns was dose-dependent: complementing mutants with nonpolarized patterns decreased and noncomplementing mutations increased with increasing X-ray dose. There was little or no change with dose in the frequency of mutants with polarized patterns. In the present report, data from studies published previously have been utilized, along with additional data from the original X-ray experiments (12-5, 12-6, 12-7, and 12-10; see Webber and de Serres, 1965) to develop composite complementation maps of the X-ray-induced specific-locus mutations in the ad-3 and immediately adjacent regions as a function of X-ray dose. This analysis of the overall spectrum of X-ray-induced specific-locus mutations in the ad-3 region demonstrated marked dose-dependence and provides an explanation for the discrepancies in the literature with regard to specific-locus studies in different experimental organisms.  相似文献   

6.
7.
Genes of the dilute-short ear (d-se) region of mouse chromosome 9 comprise an array of loci important to the normal development of the animal. Over 200 spontaneous, chemically induced and radiation-induced mutations at these loci have been identified, making it one of the most genetically well-characterized regions of the mouse. Molecular analysis of this region has recently become feasible by the identification of a dilute mutation that was induced by integration of an ecotropic murine leukemia virus genome. Several unique sequence cellular DNA probes flanking this provirus have now been identified and used to investigate the organization of wild-type chromosomes and chromosomes with radiation-induced d-se region mutations. As expected, several of these mutations are associated with deletions, and, in general, the molecular and genetic complementation maps of these mutants are concordant. Furthermore, a deletion breakpoint fusion fragment has been identified and has been used to orient the physical map of the d-se region with respect to the genetic complementation map. These experiments provide important initial steps for analyzing this developmentally important region at the molecular level, as well as for studying in detail how a diverse group of mutagens acts on the mammalian germline.  相似文献   

8.
Chromosomal rearrangements have been instrumental in genetic studies in Drosophila. Visibly marked deficiencies (deletions) are used in mapping studies and region-specific mutagenesis screens by providing segmental haploidy required to uncover recessive mutations. Marked recessive lethal inversions are used as balancer chromosomes to maintain recessive lethal mutations and to maintain the integrity of mutagenized chromosomes. In mice, studies on series of radiation-induced deletions that surround several visible mutations have yielded invaluable functional genomic information in the regions analyzed. However, most regions of the mouse genome are not accessible to such analyses due to a lack of marked chromosomal rearrangements. Here we describe a method to generate defined chromosomal rearrangements using the Cre--loxP recombination system based on a published strategy [R. Ramirez-Solis, P. Liu, and A. Bradley, (1995) Nature 378, 720--724]. Various types of rearrangements, such as deletions, duplications, inversions, and translocations, can be engineered using this strategy. Furthermore, the rearrangements can be visibly marked with coat color genes, providing essential reagents for large-scale recessive genetic screens in the mouse. The ability to generate marked chromosomal rearrangements will help to elevate the level of manipulative mouse genetics to that of Drosophila genetics.  相似文献   

9.
We describe how the diversity arrays technology (DArT) can be coupled with chromosome sorting to increase the density of genetic maps in specific genome regions. Chromosome 3B and the short arm of chromosome 1B (1BS) of wheat were isolated by flow cytometric sorting and used to develop chromosome- and chromosome arm-enriched genotyping arrays containing 2,688 3B clones and 384 1BS clones. Linkage analysis showed that 553 of the 711 polymorphic 3B-derived markers (78%) mapped to chromosome 3B, and 59 of the 68 polymorphic 1BS-derived markers (87%) mapped to chromosome 1BS, confirming the efficiency of the chromosome-sorting approach. To demonstrate the potential for saturation of genetic maps, we constructed a consensus map of chromosome 3B using 19 mapping populations, including some that were genotyped with the 3B-enriched array. The 3B-derived DArT markers doubled the number of genetic loci covered. The resulting consensus map, probably the densest genetic map of 3B available to this date, contains 939 markers (779 DArTs and 160 other markers) that segregate on 304 genetically distinct loci. Importantly, only 2,688 3B-derived clones (probes) had to be screened to obtain almost twice as many polymorphic 3B markers (510) as identified by screening approximately 70,000 whole genome-derived clones (269). Since an enriched DArT array can be developed from less than 5 ng of chromosomal DNA, a quantity which can be obtained within 1 h of sorting, this approach can be readily applied to any crop for which chromosome sorting is available.  相似文献   

10.
Kappes SM 《Theriogenology》1999,51(1):135-147
A number of recent advances in genomic research will change and improve livestock production in the near future. Genetic linkage maps have been developed for a number of livestock species including cattle, sheep, and pigs. These maps allow scientists to identify chromosomal regions that influence traits of economic importance. This information will lead to improved genetic selection practices by identifying animals with superior copies of the chromosomal regions that affect the selected trait. This mapping information will also be used to identify the genes controlling the trait. A number of genomic regions or loci have already been reported that affect production, carcass or disease traits, and in a few cases, a specific gene has been identified. Production of transgenic animals with sequence changes in these genes may be beneficial for evaluating the effect of the gene upon the selected trait and more specifically the effect of certain polymorphisms (mutations) within the gene.  相似文献   

11.
Rice genome organization: the centromere and genome interactions   总被引:9,自引:0,他引:9  
Over the last decade, many varied resources have become available for genome studies in rice. These resources include over 4000 DNA markers, several bacterial artificial chromosome (BAC) libraries, P-1 derived artificial chromosome (PAC) libraries and yeast artificial chromosome (YAC) libraries (genomic DNA clones, filters and end-sequences), retrotransposon tagged lines, and many chemical and irradiated mutant lines. Based on these, high-density genetic maps, cereal comparative maps, YAC and BAC physical maps, and quantitative trait loci (QTL) maps have been constructed, and 93 % of the genome has also been sequenced. These data have revealed key features of the genetic and physical structure of the rice genome and of the evolution of cereal chromosomes. This Botanical Briefing examines aspects of how the rice genome is organized structurally, functionally and evolutionarily. Emphasis is placed on the rice centromere, which is composed of long arrays of centromere-specific repetitive sequences. Differences and similarities amongst various cereal centromeres are detailed. These indicate essential features of centromere function. Another view of various kinds of interactive relationships within and between genomes, which could play crucial roles in genome organization and evolution, is also introduced. Constructed genetic and physical maps indicate duplication of chromosomal segments and spatial association between specific chromosome regions. A genome-wide survey of interactive genetic loci has identified various reproductive barriers that may drive speciation of the rice genome. The significance of these findings in genome organization and evolution is discussed.  相似文献   

12.
In previous studies, X-ray-induced specific-locus mutations in the adenine-3 (ad-3) region of a two-component heterokaryon (H-12) of Neurospora crassa were combined with a series of tester strains carrying markers in the ad-3 and immediately adjacent regions to map mutants that were presumed multilocus deletions (de Serres, 1989c, 1990a). Two new classes of X-ray-induced mutations were recovered: multiple-locus mutations consisting of gene/point mutations at the ad-3A or ad-3B locus with a closely linked recessive lethal mutation, or multilocus deletions covering the ad-3A, ad-3B and/or nic-2 loci with a closely linked recessive lethal mutation (designated ad-3R + RLCL and [ad-3]IR + RLCL, respectively). Thus, the ad-3 specific-locus assay can detect damage occurring at the ad-3A and the ad-3B loci, as well as at a minimum of 19 other loci in the immediately adjacent regions. The original overall spectrum of ad-3 mutations can be resolved, by genetic analysis, into a series of 30 subclasses. In the present paper, the data from the genetic analysis of 832 X-ray-induced mutants recovered from a series of 4 experiments (Webber and de Serres, 1965) have been presented in terms of Mutational Spectra organized as a function of X-ray dose. Comparison of these Spectra demonstrates the shift from high percentages of gene/point mutations (with a high percentage of mutants at the ad-3B locus showing allelic complementation) at low doses, to low percentages of gene/point mutations (with a low percentage of ad-3B mutants showing allelic complementation) and high percentages of multilocus deletion mutations and multiple-locus mutations (of genotype ad-3R + RLCL or [ad-3]IR + RLCL) at high doses. These Mutational Spectra demonstrate the marked dose-dependence of X-ray-induced specific-locus mutations in a eukaryotic organism.  相似文献   

13.
Walling JG  Shoemaker R  Young N  Mudge J  Jackson S 《Genetics》2006,172(3):1893-1900
Soybean has 20 chromosome pairs that are derived from at least two rounds of genomewide duplication or polyploidy events although, cytogenetically, soybean behaves like a diploid and has disomic inheritance for most loci. Genetically anchored genomic clones were used as probes for fluorescence in situ hybridization (FISH) to determine the level of postpolyploid chromosomal rearrangements and to integrate the genetic and physical maps to (1) assign linkage groups to specific chromosomes, (2) assess chromosomal structure, and (3) determine the distribution of recombination along the length of a chromosome. FISH mapping of seven putatively gene-rich BACs from linkage group L (chromosome 19) revealed that most of the genetic map correlates to the highly euchromatic long arm and that there is extensive homeology with another chromosome pair, although colinearity of some loci does appear to be disrupted. Moreover, mapping of BACs containing high-copy sequences revealed sequestration of high-copy repeats to the pericentromeric regions of this chromosome. Taken together, these data present a model of chromosome structure in a highly duplicated but diploidized eukaryote, soybean.  相似文献   

14.
The stage 0 sporulation locus spo0B has been mapped by transformation between the pheA and spoIVF loci. Analysis of the behavior of alleles of the spo0B locus in trpE26 merodiploid strains indicates that all of the known alleles of this locus comprise a single complementation group. The spoIVF88 mutation was found to reside in a separate complementation group. The chromosomal region surrounding and including the spo0B locus was cloned in the lambda vector Charon 4A. Extensive restriction endonuclease analyses of the inserts in these phage revealed that an EcoRI fragment of DNA of 2.3 kilobases had transforming activity for spo0B mutations. Examination of the physical and genetic maps of the locus suggested that the entire spo0B locus is contained within this fragment. Subcloning of restriction endonuclease fragments of the lambda inserts and transformation analyses allowed assignment of surrounding genetic loci to specific DNA fragments.  相似文献   

15.
K. S. Gill  B. S. Gill  T. R. Endo    E. V. Boyko 《Genetics》1996,143(2):1001-1012
The distribution of genes and recombination in the wheat genome was studied by comparing physical maps with the genetic linkage maps. The physical maps were generated by mapping 80 DNA and two phenotypic markers on an array of 65 deletion lines for homoeologous group 5 chromosomes. The genetic maps were constructed for chromosome 5B in wheat and 5D in Triticum tauschii. No marker mapped in the proximal 20% chromosome region surrounding the centromere. More than 60% of the long arm markers were present in three major clusters that physically encompassed <18% of the arm. Because 48% of the markers were cDNA clones and the distributions of the cDNA and genomic clones were similar, the marker distribution may represent the distribution of genes. The gene clusters were identified and allocated to very small chromosome regions because of a higher number of deletions in their surrounding regions. The recombination was suppressed in the centromeric regions and mainly occurred in the gene-rich regions. The bp/cM estimates varied from 118 kb for gene-rich regions to 22 Mb for gene-poor regions. The wheat genes present in these clusters are, therefore, amenable to molecular manipulations parallel to the plants with smaller genomes like rice.  相似文献   

16.
Genetic screens in zebrafish have provided mutations in hundreds of genes with essential functions in the developing embryo. To investigate the possible uses of chromosomal rearrangements in the analysis of these mutations, we genetically characterized three gamma-ray induced alleles of cyclops (cyc), a gene required for development of midline structures. We show that cyc maps near one end of Linkage Group 12 (LG 12) and that this region is involved in a reciprocal translocation with LG 2 in one gamma-ray induced mutation, cyc(b213). The translocated segments together cover approximately 5% of the genetic map, and we show that this rearrangement is useful for mapping cloned genes that reside in the affected chromosomal regions. The other two alleles, cyc(b16) and cyc(b229), have deletions in the distal region of LG 12. Interestingly, both of these mutations suppress recombination between genetic markers in LG 12, including markers at a distance from the deletion. This observation raises the possibility that these deletions affect a site required for meiotic recombination on the LG 12 chromosome. The cyc(b16) and cyc(b229) mutations may be useful for balancing other lethal mutations located in the distal region of LG 12. These results show that chromosomal rearrangements can provide useful resources for mapping and genetic analyses in zebrafish.  相似文献   

17.
D. Gubb  S. McGill    M. Ashburner 《Genetics》1988,119(2):377-390
A screen is described that will select for breakpoints within a restricted chromosomal region in Drosophila. The aberrations recovered can be used to construct chromosomes carrying synthetic duplications and deletions. Such chromosomes have applications in the mapping of complementation groups at both the genetic and molecular level. In particular, breakpoints recovered after P element hybrid dysgenesis tend to be associated with P element insertion sites. Such aberration breakpoints can be genetically mapped, as synthetic deletions, and then used as transposon-tagged sites for the recovery of genomic clones.  相似文献   

18.
We have analyzed the 2E1-3A1 area of the X chromosome with special attention to loci related to embryogenesis. Published maps indicate that this chromosomal segment contains ten bands. Our genetic analysis has identified 11 complementation groups: one recessive visible (prune), two female steriles and eight lethals. One of the female sterile loci is fs(1)k10 for which homozygous females produce both egg chambers and embryos with a dorsalized morphology. The second female sterile is the paternally rescuable fs(1)pecanex in which unrescued embryos have a hypertrophic nervous system. Of the eight lethal complementation groups two are recessive embryonic lethals: hemizygous giant (gt) embryos possess segmental defects, and hemizygous crooked neck (crn) embryos exhibit a twisted phenotype. Analysis of these mutations in the female germ line indicates that gt does not show a maternal effect, whereas normal activity of crn is required for germ cell viability. Analysis of the maternal effect in germ line clones of the remaining six recessive lethal complementation groups indicates that four are required for germ cell viability and one produces ambiguous results for survival of the germ cells. The remaining, l(1)pole hole, is a recessive early pupal lethal in which embryos derived from germ line clones and lacking wild-type gene activity exhibit the "torso" or "pole hole" phenotype.  相似文献   

19.
Because of polyploidy and large genome size, deletion stocks of bread wheat are an ideal material for physically allocating ESTs and genes to small chromosomal regions for targeted mapping. To enhance the utility of deletion stocks for chromosome bin mapping, we characterized a set of 84 deletion lines covering the 21 chromosomes of wheat using 725 microsatellites. We localized these microsatellite loci to 94 breakpoints in a homozygous state (88 distal deletions, 6 interstitial), and 5 in a heterozygous state representing 159 deletion bins. Chromosomes from homoeologous groups 2 and 5 were the best covered (126 and 125 microsatellites, respectively) while the coverage for group 4 was lower (80 microsatellites). We assigned at least one microsatellite in up to 92% of the bins (mean 4.97 SSR/bin). Only a few discrepancies concerning marker order were observed. The cytogenetic maps revealed small genetic distances over large physical regions around the centromeres and large genetic to physical map ratios close to the telomeres. As SSRs are the markers of choice for many genetic and breeding studies, the mapped microsatellite loci will be useful not only for deletion stock verifications but also for allocating associated QTLs to deletion bins where numerous ESTs that could be potential candidate genes are currently assigned.  相似文献   

20.
cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号