首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Plant leaves play a significant role in photosynthesis. Normal chloroplast development is critical for plant growth and yield performance. Defect of the chlorophyll in chloroplasts may cause abnormal leaf colors, such as yellow, white, or stripe. Chloroplasts have their own genomes encoding for about 100 genes that are essential for plastid protein synthesis and photosynthesis (Kanno and Hirai, 1993; Sato et al., 1999). Moreover, over 3000 proteins encoded by plant nuclear genomes target to the chloroplasts and participate in the chloroplast development and/or photosynthesis. Hitherto, a number of plant genes, which encode for enzymes involved in chlorophyll biosynthetic pathways,  相似文献   

2.
《Acta Botanica Sinica》2009,(8):718-718
Since the very beginning of plant science, sexual plant reproduction (SPR) has proved an attractive and enduring topic for generations of botanists. With the rapid development of modern technology, a significant acceleration has occurred in our understanding on the developmental mechanisms of plant reproductive processes, particularly the evolution of double fertilisation, signalling in pollen tube orientation, molecular characterisation of plant gametes, maternal to zygotic transitions and parental gene involvement in early embryogenesis. This is reflected not only by several recent high-ranking research papers, but also by the frequent conferences and workshops on these topics. These include the 2008 XXth International Congress on SPR in Brasilia and "Frontiers in SPR Ⅲ" in Tucson, as well as "Cell- Cell Communication in Plant Reproduction" held in 2009 in Bath. The continuing efforts from around the world indicate that SPR is still a fertile and flourishing field, with great expectations for the coming decade.  相似文献   

3.
<正>Plant behavioral actions have been one of the major topics of research in plant biology and agriculture. These actions from plants are determined by their instant structural and physical reactions to the circumstances(Bouwmeester et al.,2019). Upon sensing abiotic factors such as salinity, flooding,high temperature, drought, plants make suitable changes in their physiology and behavior to survive such harsh conditions. Likewise, the continuous attack by biotic stresses such as insects a...  相似文献   

4.
Metabolic Engineering of Tropane Alkaloid Biosynthesis in Plants   总被引:8,自引:0,他引:8  
Over the past decade, the evolving commercial importance of so-called plant secondary metabolites has resulted in a great interest in secondary metabolism and, particularly, in the possibilities to enhance the yield of fine metabolites by means of genetic engineering. Plant alkaloids, which constitute one of the largest groups of natural products, provide many pharmacologically active compounds. Several genes in the tropane alkaloids biosynthesis pathways have been cloned, making the metabolic engineering of these alkaloids possible. The content of the target chemical scopolamine could be significantly increased by various approaches, such as introducing genes encoding the key biosynthetic enzymes or genes encoding regulatory proteins to overcome the specific rate-limiting steps. In addition, antisense genes have been used to block competitive pathways. These investigations have opened up new, promising perspectives for increased production in plants or plant cell culture. Recent achievements have been made in the metabolic engineering of plant tropane alkaloids and some new powerful strategies are reviewed in the present paper.  相似文献   

5.
The ability of a plant cell to expand is largely defined by the physical constraints imposed by its cell wall. Accordingly, cell wall properties have to be regulated during development. The pectic polysaccharide homogalacturonan is a major component of the plant primary walls. Biosynthesis and in muro modification of homogalacturonan have recently emerged as key determinants of plant development, controlling cell adhesion, organ development, and phyllotactic patterning. This review will focus on recent findings regarding impact of homogalacturonan content and methylesterification status of this polymer on plant life. Demethyl-esterification of homogalacturonan occurs through the action of the ubiquitous enzyme 'pectin methyl-esterase'. We here describe various strategies developed by the plant to finely tune the methyl-esterification status of homogalacturonan along key events of the plant lifecycle.  相似文献   

6.
7.
8.
9.
正We are very pleased to announce a special issue,to be published in the fall of 2018,on "Plant Genomics"in the journal Genomics,ProteomicsBioinformatics(GPB).The development of genomics has greatly accelerated and even renovated the plant research.The sequencing of plant genomes has greatly facilitated the research on gene functions.The  相似文献   

10.
The COP9 signalosome(CSN)is a conserved protein complex,typically composed of eight subunits(designated as CSN1 to CSN8)in higher eukaryotes such as plants and animals,but of fewer subunits in some lower eukaryotes such as yeasts.The CSN complex is originally identified in plants from a genetic screen for mutants that mimic light-induced photomorphogenic development when grown in the dark.The CSN complex regulates the activity of cullin-RING ligase(CRL)families of E3 ubiquitin ligase complexes,and play critical roles in regulating gene expression,cell proliferation,and cell cycle.This review aims to summarize the discovery,composition,structure,and function of CSN in the regulation of plant development in response to external(light and temperature)and internal cues(phytohormones).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号