首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This review summarizes properties of various naturally occurring compounds with reported calmodulin (CaM)-inhibitory properties which include about 159 natural products belonging to different structural classes. Most inhibitors are alkaloid and peptide type of compounds and have been isolated from a wide variety of natural sources, including many plant species. Among the most potent natural anti-CaM substances, however, are several animal venoms and the antibiotic polymixin. The largest number of compounds described were discovered by means of enzymatic functional assays.  相似文献   

3.
Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, we will cover the recent results on the existence of plant caspase-like proteases and introduce major technologies used in detecting the activation of caspase-like proteases during plant PCD.Key words: caspase-like proteases, fluorescence resonance energy transfer, programmed cell death  相似文献   

4.
Evolution of steroids such as sex hormones and ecdysteroids occurred independently in the animal and plant kingdoms. Plants use phytoecdysteroids (PEs) to control defense interactions with some predators; furthermore, PEs can exert beneficial influence on many aspects of mammalian metabolism. Endocrine disrupting compounds such as the estrogen agonist bisphenol A (BPA) are widespread in the environment, posing a potential hormonal risk to animals and plants. Adverse BPA effects on reproductive development and function are coupled with other toxic effects. BPA bioremediation techniques could be developed by exploiting some tolerant plant species.Key words: androgens, endocrine disrupting compounds, bisphenol A, estrogens, hormone receptors, phytoecdysteroids  相似文献   

5.
植物对植食性哺乳动物的化学防卫   总被引:3,自引:1,他引:2  
综述植物次生合物防卫植食性哺乳动物食的研究进展,植物组织的次生化合物主要为酚类、萜类及含N类化合物,植物对动物觅食的化学防卫对策以次生化合物的各类而有差异,次生化合物通过对动物的食物摄入、消化、代谢,以及敏殖活动的效应,以抵御动物的觅食。将植物化学防卫与动物适应对策相结合,探讨动物-植物协同进化模式,是该研究领域的主要发展趋势。  相似文献   

6.
Many ecological studies rely heavily on chemical analysis of plant and animal tissues. Often, there is limited time and money to perform all the required analyses and this can result in less than ideal sampling schemes and poor levels of replication. Near infrared reflectance spectroscopy (NIRS) can relieve these constraints because it can provide quick, non-destructive and quantitative analyses of an enormous range of organic constituents of plant and animal tissues. Near infrared spectra depend on the number and type of CH, NH and OH bonds in the material being analyzed. The spectral features are then combined with reliable compositional or functional analyses of the material in a predictive statistical model. This model is then used to predict the composition of new or unknown samples. NIRS can be used to analyze some specific elements (indirectly – e.g., N as protein) or well-defined compounds (e.g., starch) or more complex, poorly defined attributes of substances (e.g., fiber, animal food intake) have also been successfully modeled with NIRS technology. The accuracy and precision of the reference values for the calibration data set in part determines the quality of the predictions made by NIRS. However, NIRS analyses are often more precise than standard laboratory assays. The use of NIRS is not restricted to the simple determination of quantities of known compounds, but can also be used to discriminate between complex mixtures and to identify important compounds affecting attributes of interest. Near infrared reflectance spectroscopy is widely accepted for compositional and functional analyses in agriculture and manufacturing but its utility has not yet been recognized by the majority of ecologists conducting similar analyses. This paper aims to stimulate interest in NIRS and to illustrate some of the enormous variety of uses to which it can be put. We emphasize that care must be taken in the calibration stage to prevent propagation of poor analytical work through NIRS, but, used properly, NIRS offers ecologists enormous analytical power. Received: 10 October 1997 / Accepted: 12 May 1998  相似文献   

7.
Antibody production by molecular farming in plants   总被引:7,自引:0,他引:7  
"Molecular farming" is the production of pharmaceutical proteins in transgenic plants and has great potential for the production of therapeutic anti-cancer antibodies and recombinant therapeutic proteins. Plants make fully functional recombinant human or animal antibodies. Cultivating transgenic plants on an agricultural scale will produce almost unlimited supplies of recombinant proteins for uses in medicine. Combinatorial library technology is a key tool for the generation and optimisation of therapeutic antibodies ahead of their expression in plants. Optimised antibody expression can be rapidly verified using transient expression assays in plants before creation of transgenic suspension cells or plant lines. Subcellular targeting signals that increase expression levels and optimise protein stability can be identified and exploited using transient expression to create high expresser plant lines. When high expresser lines have been selected, the final step is the development of efficient purification methods to retrieve functional antibody. Antibody production on an industrial scale is then possible using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Recombinant proteins can be produced either in whole plants or in seeds and tubers, which can be used for the long-term storage of both the protein and its production system. The review will discuss these developments and how we are moving toward the molecular farming of therapeutic antibodies becoming an economic and clinical reality.  相似文献   

8.
Plants are potentially important for novel therapeutic drug leads, but the slowness of conventional methods for investigation of plants limits enthusiasm in the pharmaceutical industry. To overcome some of the drawbacks, we have applied high throughput pharmacological screening (HTPS) to crude plant extracts. Using a "differential smart screen", (DSS) the spectrum of activity contained in a crude extract is measured at several closely related receptor subtypes. This spectrum is then compared to that of known compounds. A unique spectrum suggests that the extract merits further investigation. Evaluation of species and environmental libraries of whole plants has demonstrated the value of this approach for rapid prioritization of plants for investigation. In addition, genomic and genetic manipulation of plants and plant cell cultures can increase the value of DSS. For example, the whole genomic potential of a plant species for biodiversity can be accessed by using gain of function mutations to generate a "functional genomics library" of mutant clonal cultures, and the bioactivity of these cultures tested by DSS. Clones that overproduce activity differing from the wild-type plant can be identified in this way. This "Natural Products Genomics" (NPG) strategy is limited by the massive numbers of clonal cultures that are required to cover all possible gain-of-function mutations. The rapidity and efficiency of this process can be improved by using transgenic plants expressing appropriate mammalian proteins. These may be designed to make the plant cell resemble a human cell for a specific form of toxicity. Now, "unnatural selection" of resistant mutant clones can be used to provide a sub-population potentially enriched in useful compounds. Alternatively, transgenic plant cells can be used for "in situ screening" in which a mammalian receptor protein, linked to a reporter construct, such as green fluorescent protein, is expressed. Clonal cultures that produce ligands for this receptor can now be rapidly identified visually in an ultra-HTPS. Overall, our aim is to use pharmacological screening, together with functional genomic approaches, to make plant drug discovery competitive with combinatorial chemistry.  相似文献   

9.
病毒编码的富含半胱氨酸的小分子量蛋白(CRPs)在植物和动物病毒中均有发现。动物病毒中研究较多的是反转录病毒的核蛋白(NC)。在植物病毒中由hordei,tobra,furoandcarlaviruses编码的CRPs的分子生物学研究近年来才开展起来。动物和植物病毒的CRPs共有的典型特征是均有锌指结构和碱性氨基酸丰富区,这使它们在核酸结合特性上有共同特征。动物病毒CRPs的结构和功能方面的研究已有很好的进展。相反,植物病毒的CRPs的研究进展较为缓慢。本文对病毒的CRPs的最新进展进行了综述。对动物和植物病毒的CRPs的比较分析有助于将来这类蛋白功能的阐明。  相似文献   

10.
Oomycetes are a diverse group of filamentous eukaryotic microbes comprising devastating animal and plant pathogens. They share many characteristics with fungi, including polarized hyphal extension and production of spores, but phylogenetics studies have clearly placed oomycetes outside the fungal kingdom, in the kingdom Stramenopila which also includes marine organisms such as diatoms and brown algae. Oomycetes display various specific biochemical features, including sterol metabolism. Sterols are essential isoprenoid compounds involved in membrane function and hormone signaling. Oomycetes belonging to Peronosporales, such as Phytophthora sp., are unable to synthesize their own sterols and must acquire them from their plant or animal hosts. In contrast, a combination of biochemical and molecular approaches allowed us to decipher a nearly complete sterol biosynthetic pathway leading to fucosterol in the legume pathogen Aphanomyces euteiches, an oomycete belonging to Saprolegniales. Importantly, sterol demethylase, a key enzyme from this pathway, is susceptible to chemicals widely used in agriculture and medicine as antifungal drugs, suggesting that similar products could be used against plant and animal diseases caused by Saprolegniales.Key words: azoles, fungicides, root rot, elicitin, Saprolegnia, chromoalveolates  相似文献   

11.
Plant models for animal pathogenesis   总被引:3,自引:0,他引:3  
Several bacteria that are pathogenic to animals also infect plants. Mechanistic studies have proven that some human/animal pathogenic bacteria employ a similar subset of virulence determinants to elicit disease in animals, invertebrates and plants. Therefore, the results of plant infection studies are relevant to animal pathogenesis. This discovery has resulted in the development of convenient, cost-effective, and reliable plant infection models to study the molecular basis of infection by animal pathogens. Plant infection models provide a number of advantages in the study of animal pathogenesis. Using a plant model, mutations in animal pathogenic bacteria can easily be screened for putative virulence factors, a process which if done using existing animal infection models would be time-consuming and tedious. High-throughput screening of plants also provides the potential for unravelling the mechanisms by which plants resist animal pathogenic bacteria, and provides a means to discover novel therapeutic agents such as antibiotics and anti-infective compounds. In this review, we describe the developing technique of using plants as a model system to study Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus pathogenesis, and discuss ways to use this new technology against disease warfare and other types of bioterrorism.  相似文献   

12.
With the fairly recent advent of inexpensive, rapid sequencing technologies that continue to improve sequencing efficiency and accuracy, many species of animals, plants, and microbes have annotated genomic information publicly available. The focus on genomics has thus been shifting from the collection of whole sequenced genomes to the study of functional genomics. Reverse genetic approaches have been used for many years to advance from sequence data to the resulting phenotype in an effort to deduce the function of a gene in the species of interest. Many of the currently used approaches (RNAi, gene knockout, site-directed mutagenesis, transposon tagging) rely on the creation of transgenic material, the development of which is not always feasible for many plant or animal species. TILLING is a non-transgenic reverse genetics approach that is applicable to all animal and plant species which can be mutagenized, regardless of its mating / pollinating system, ploidy level, or genome size. This approach requires prior DNA sequence information and takes advantage of a mismatch endonuclease to locate and detect induced mutations. Ultimately, it can provide an allelic series of silent, missense, nonsense, and splice site mutations to examine the effect of various mutations in a gene. TILLING has proven to be a practical, efficient, and an effective approach for functional genomic studies in numerous plant and animal species. EcoTILLING, which is a variant of TILLING, examines natural genetic variation in populations and has been successfully utilized in animals and plants to discover SNPs including rare ones. In this review, TILLING and EcoTILLING techniques, beneficial applications and limitations from plant and animal studies are discussed.Key Words: Reverse genetics, functional genomics, TILLING (target induced local lesions in genomes), EcoTILLING (Ecotype TILLING), sequencing, SNP (single nucleotide polymorphism), genetic stocks.  相似文献   

13.
BARD1 (BRCA1 associated RING domain protein 1), as an important animal tumor suppressor gene associated with many kinds of cancers, has been intensively studied for decades. Surprisingly, homolog of BARD1 was found in plants and it was renamed AtROW1 (repressor of Wuschel-1) according to its extremely important function with regard to plant stem cell homeostasis. Although great advances have been made in human BARD1, the function of this animal tumor-suppressor like gene in plant is not well studied and need to be further elucidated. Here, we review and summarize past and present work regarding this protein. Apart from its previously proposed role in DNA repair, recently it is found essential for shoot and root stem cell development and differentiation in plants. The study of AtROW1 in plant may provide an ideal model for further elucidating the functional mechanism of BARD1 in mammals.  相似文献   

14.
Fumonisins (FB) and AAL-toxin are sphingoid-like compounds produced by several species of fungi associated with plant diseases. In animal cells, both fumonisins produced by Fusarium moniliforme and AAL-toxin produced by Alternaria alternata f. sp. lycopersici inhibit ceramide synthesis, an early biochemical event in the animal diseases associated with consumption of F. moniliforme-contaminated corn. In duckweed (Lemna pausicostata Heglem. 6746), tomato plants (Lycopersicon esculentum Mill), and tobacco callus (Nicotiana tabacum cv Wisconsin), pure FB1 or AAL-toxin caused a marked elevation of phytosphingosine and sphinganine, sphingoid bases normally present in low concentrations. The relative increases were quite different in the three plant systems. Nonetheless, disruption of sphingolipid metabolism was clearly a common feature in plants exposed to FB1 or AAL-toxin. Resistant varieties of tomato (Asc/Asc) were much less sensitive to toxin-induced increases in free sphinganine. Because free sphingoid bases are precursors to plant "ceramides," their accumulation suggests that the primary biochemical lesion is inhibition of de novo ceramide synthesis and reacylation of free sphingoid bases. Thus, in plants the disease symptoms associated with A. alternata and F. moniliforme infection may be due to disruption of sphingolipid metabolism.  相似文献   

15.
Several floral microbes are known to be pathogenic to plants or floral visitors such as pollinators. Despite the ecological and economic importance of pathogens deposited in flowers, we often lack a basic understanding of how floral traits influence disease transmission. Here, we provide the first systematic review regarding how floral traits attract vectors (for plant pathogens) or hosts (for animal pathogens), mediate disease establishment and evolve under complex interactions with plant mutualists that can be vectors for microbial antagonists. Attraction of floral visitors is influenced by numerous phenological, morphological and chemical traits, and several plant pathogens manipulate floral traits to attract vectors. There is rapidly growing interest in how floral secondary compounds and antimicrobial enzymes influence disease establishment in plant hosts. Similarly, new research suggests that consumption of floral secondary compounds can reduce pathogen loads in animal pollinators. Given recent concerns about pollinator declines caused in part by pathogens, the role of floral traits in mediating pathogen transmission is a key area for further research. We conclude by discussing important implications of floral transmission of pathogens for agriculture, conservation and human health, suggesting promising avenues for future research in both basic and applied biology.  相似文献   

16.
Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.  相似文献   

17.
Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.  相似文献   

18.

Background and Aims

Soil texture is an important determinant of ecosystem structure and productivity in drylands, and may influence animal foraging and, indirectly, plant community composition.

Methods

We measured the density and composition of surface disturbances (foraging pits) of small, soil-foraging desert vertebrates in shrubland and grasslands, both with coarse- and fine-textured soils. We predicted that the density and functional significance of disturbances would be related more to differences in texture than shrub encroachment.

Results

Soil texture had a stronger influence on animal foraging sites than shrub encroachment. There were more disturbances, greater richness and abundance of trapped seed, and greater richness of germinating plants on coarse- than fine-textured soils. Pits in coarse soils trapped 50 % more litter than those in finer soils. Apart from slightly more soil removal and greater litter capture in shrubland pits, there were no effects of encroachment.

Conclusions

Although the process of woody encroachment has been shown to have marked effects on some ecosystem properties, it is likely to have a more subordinate effect on surface disturbances and therefore their effects on desert plant communities than soil texture. Our results highlight the importance of animal activity in shaping desert plant communities, and potentially, in maintaining or reinforcing shrub dominant processes.  相似文献   

19.
Although a majority of the key works on chromatin structure and function have been carried out using animal tissues, studies of plant chromatin and the characterization of the histones and nonhistone chromosomal proteins are now developing well. There are clear functional differences between plant and animal genomes, including the percentage of total DNA transcribed, levels of ploidy, and the pathways of morphogenesis and cell differentiation. It is therefore not surprising that differences are appearing between animal and plant chromatin, for example, the consensus amino acid sequence for the plant H3 globular domain; the extensions to the basic domain regions of some plant histones such as H2A, which have specific interactions with linker DNA; the larger molecular weight of the plant H1 molecule with its extended basic domains correlated with short lengths of linker DNA, and the absence of the five residue binding segment in the globular part of plant H1, which suggests differences in the organization of higher order structure in plant chromatin. There are also unifying features between plant and animal chromatin, and the nature of plant material makes its study particularly advantageous in several areas. The regular nucleosome repeat and short lengths of linker DNA in some plants should provide more regular order structures for study, in which in the near absence of linker DNA, nucleosome position is the main, if not sole, determining factor in model building. However, the improved characterization and isolation of plant chromatin and associated molecules, for example, the isolation of the SPKK kinase gene in pea, are essential if major progress is to be made in our understanding of functional activities.  相似文献   

20.
Flavonoids are ubiquitous in the plant kingdom and have many diverse functions including defense, UV protection, auxin transport inhibition, allelopathy, and flower coloring. Interestingly, these compounds also have considerable biological activity in plant, animal and bacterial systems – such broad activity is accomplished by few compounds. Yet, for all the research over the last three decades, many of the cellular targets of these secondary metabolites are unknown. The many mutants available in model plant species such as Arabidopsis thaliana and Medicago truncatula are enabling the intricacies of the physiology of these compounds to be deduced. In the present review, we cover recent advances in flavonoid research, discuss deficiencies in our understanding of the physiological processes, and suggest approaches to identify the cellular targets of flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号