首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Human pancreatic ribonuclease (HPR) and bovine RNase A belong to the RNase A superfamily and possess similar key structural and catalytic residues. Compared to RNase A, HPR has six extra non-catalytic basic residues and high double-stranded RNA (dsRNA) cleavage activity. We mutated four of these basic residues, K6, R32, K62, and K74 to alanine and characterized the variants for function and stability. Only the variant K74A had an altered secondary structure. Whereas R32A and K62A had full catalytic activity, the mutants K6A and K74A had reduced activity on both ssRNA and dsRNA. The mutations of K62 and K74 resulted in reduction in protein stability and DNA double helix unwinding activity of HPR; while substitutions of K6 and R32 did not affect either the stability or helix unwinding activity. The reduced catalytic and DNA melting activities of K74A mutant appear to be an outcome of its altered secondary structure. The basic residues studied here, appear to contribute to the overall stability, folding, and general catalytic activity of HPR.  相似文献   

2.
Sorrentino S  Naddeo M  Russo A  D'Alessio G 《Biochemistry》2003,42(34):10182-10190
Under physiological salt conditions double-stranded (ds) RNA is resistant to the action of most mammalian extracellular ribonucleases (RNases). However, some pancreatic-type RNases are able to degrade dsRNA under conditions in which the activity of bovine RNase A, the prototype of the RNase superfamily, is essentially undetectable. Human pancreatic ribonuclease (HP-RNase) is the most powerful enzyme to degrade dsRNA within the tetrapod RNase superfamily, being 500-fold more active than the orthologous bovine enzyme on this substrate. HP-RNase has basic amino acids at positions where RNase A shows instead neutral residues. We found by modeling that some of these basic charges are located on the periphery of the substrate binding site. To verify the role of these residues in the cleavage of dsRNA, we prepared four variants of HP-RNase: R4A, G38D, K102A, and the triple mutant R4A/G38D/K102A. The overall structure and active site conformation of the variants were not significantly affected by the amino acid substitutions, as deduced from CD spectra and activity on single-stranded RNA substrates. The kinetic parameters of the mutants with double-helical poly(A).poly(U) as a substrate were determined, as well as their helix-destabilizing action on a synthetic DNA substrate. The results obtained indicate that the potent activity of HP-RNase on dsRNA is related to the presence of noncatalytic basic residues which cooperatively contribute to the binding and destabilization of the double-helical RNA molecule. These data and the wide distribution of the enzyme in different organs and body fluids suggest that HP-RNase has evolved to perform both digestive and nondigestive physiological functions.  相似文献   

3.
Ecto-nucleoside triphosphate diphosphohydrolase 3 (eNTPDase-3, also known as HB6 and CD39L3) is a membrane-associated ecto-apyrase. Only a few functionally significant residues have been elucidated for this enzyme, as well as for the whole family of eNTPDase enzymes. Four highly conserved regions (apyrase conserved regions, ACRs) have been identified in all the members of eNTPDase family, suggesting their importance for biological activity. In an effort to identify those amino acids important for the catalytic activity of the eNTPDase family, as well as those residues mediating substrate specificity, 11 point mutations of 7 amino acid residues in ACR1-4 of eNTPDase-3 were constructed by site-directed mutagenesis. Mutagenesis of asparagine 191 to alanine (N191A), glutamine 226 to alanine (Q226A), and arginine 67 to glycine (R67G) resulted in an increase in the rates of hydrolysis of nucleoside diphosphates relative to triphosphates. Mutagenesis of arginine 146 to proline (R146P) essentially converted the eNTPDase-3 ecto-apyrase to an ecto-ATPase (eNTPDase-2), mainly by decreasing the hydrolysis rates for nucleoside diphosphates. The Q226A mutant exhibited a change in the divalent cation requirement for nucleotidase activity relative to the wild-type and the other mutants. Mutation of glutamate 182 to aspartate (E182D) or glutamine (E182Q), and mutation of serine 224 to alanine (S224A) completely abolished enzymatic activity. We conclude that the residues corresponding to eNTPDase-3 glutamate 182 in ACR3 and serine 224 in ACR4 are essential for the enzymatic activity of eNTPDases in general, and that arginine 67, arginine 146, asparagine 191, and glutamine 226 are important for determining substrate specificity for human ecto-nucleoside triphosphate diphosphohydrolase 3.  相似文献   

4.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

5.
Mammalian ribonucleases interact very strongly with the intracellular ribonuclease inhibitor (RI). Eukaryotic cells exposed to mammalian ribonucleases are protected from their cytotoxic action by the intracellular inhibition of ribonucleases by RI. Human pancreatic ribonuclease (HPR) is structurally and functionally very similar to bovine RNase A and interacts with human RI with a high affinity. In the current study, we have investigated the involvement of Lys-7, Gln-11, Asn-71, Asn-88, Gly-89, Ser-90, and Glu-111 in HPR in its interaction with human ribonuclease inhibitor. These contact residues were mutated either individually or in combination to generate mutants K7A, Q11A, N71A, E111A, N88R, G89R, S90R, K7A/E111A, Q11A/E111A, N71A/E111A, K7A/N71A/E111A, Q11A/N71A/E111A, and K7A/Q11A/N71A/E111A. Out of these, eight mutants, K7A, Q11A, N71A, S90R, E111A, Q11A/E111A, N71A/E111A, and K7A/N71A/E111A, showed an ability to evade RI more than the wild type HPR, with the triple mutant K7A/N71A/E111A having the maximum RI resistance. As a result, these variants exhibited higher cytotoxic activity than wild type HPR. The mutation of Gly-89 in HPR produced no change in the sensitivity of HPR for RI, whereas it has been reported that mutating the equivalent residue Gly-88 in RNase A yielded a variant with increased RI resistance and cytotoxicity. Hence, despite its considerable homology with RNase A, HPR shows differences in its interaction with RI. We demonstrate that interaction between human pancreatic ribonuclease and RI can be disrupted by mutating residues that are involved in HPR-RI binding. The inhibitor-resistant cytotoxic HPR mutants should be useful in developing therapeutic molecules.  相似文献   

6.
This paper presents the complete amino acid sequence of the low molecular weight acid phosphatase from bovine liver. This isoenzyme of the acid phosphatase family is located in the cytosol, is not inhibited by L-(+)-tartrate and fluoride ions, but is inhibited by sulfhydryl reagents. The enzyme consists of 157 amino acid residues, has an acetylated NH2 terminus, and has arginine as the COOH-terminal residue. All 8 half-cystine residues are in the free thiol form. The molecular weight calculated from the sequence is 17,953. The sequence was determined by characterizing the peptides purified by reverse-phase high performance liquid chromatography from tryptic, thermolytic, peptic, Staphylococcus aureus protease, and chymotryptic digests of the carboxymethylated protein. No sequence homologies were found with the two known acylphosphatase isoenzymes or the metalloproteins porcine uteroferrin and purple acid phosphatase from bovine spleen (both of which have acid phosphatase activity). Two half-cystines at or near the active site were identified through the reaction of the enzyme with [14C] iodoacetate in the presence or in the absence of a competitive inhibitor (i.e. inorganic phosphate). Ac-A E Q V T K S V L F V C L G N I C R S P I A E A V F R K L V T D Q N I S D N W V I D S G A V S D W N V G R S P N P R A V S C L R N H G I N T A H K A R Q V T K E D F V T F D Y I L C M D E S N L R D L N R K S N Q V K N C R A K I E L L G S Y D P Q K Q L I I E D P Y Y G N D A D F E T V Y Q Q C V R C C R A F L E K V R-OH.  相似文献   

7.
Isolation of BamHI variants with reduced cleavage activities   总被引:4,自引:0,他引:4  
Derivation of the bamhIR sequence (Brooks, J. E., Nathan, P.D., Landry, D., Sznyter, L.A., Waite-Rees, P., Ives, C. C., Mazzola, L. M., Slatko, B. E., and Benner, J. S. (1991) Nucleic Acids Res., in press), the gene coding for BamHI endonuclease, has facilitated construction of an Escherichia coli strain that overproduces BamHI endonuclease (W. E. Jack, L. Greenough, L. F. Dorner, S. Y. Xu, T. Strezelecka, A. K. Aggarwal, and I. Schildkraut, submitted for publication). As expected, low-level constitutive expression of the bamhIR gene in E. coli from the Ptac promotor construct is lethal to the host unless the bamHIM gene, which encodes the BamHI methylase, is also expressed within the cell. We identified four classes of BamHI endonuclease variants deficient in catalysis by selecting for survival of a host deficient for bamHIM gene, transformed with mutagenized copies of the bamhIR gene, and then screening the surviving cell extracts for DNA cleavage and binding activities. Class I variants (G56S, G91S/T153I, T114I, G130R, E135K, T153I, T157I, G194D) displayed 0.1-1% of the wild-type cleavage activity; class II variant (D94N) lacked cleavage activity but retained wild-type DNA binding specificity; class III variants (E77K, E113K) lacked cleavage activity but bound DNA more tightly; class IV variants (G56D, G90D, G91S, R122H, R155H) lacked both binding and cleavage activities. Variants with residual cleavage activities induced the E. coli SOS response and thus are presumed to cleave chromosomal DNA in vivo. We conclude that Glu77, Asp94, and Glu113 residues are essential for BamHI catalytic function.  相似文献   

8.
Several key amino acids within amphipathic helix 8 of the human beta1-adrenergic receptor (beta1-AR) were mutagenized to characterize their role in signaling by G protein-coupled receptors. Mutagenesis of phenylalanine at position 383 in the hydrophobic interface to histidine (F383H) prevented the biosynthesis of the receptor, indicating that the orientation of helix 8 is important for receptor biosynthesis. Mutagenesis of aspartic acid at position 382 in the hydrophilic interface to leucine (D382L) reduced the binding and uncoupled the receptor from G protein activation. Mutagenesis of the basic arginine residue at position 384 to glutamine (R384Q) or to glutamic acid (R384E) increased basal and agonist-stimulated adenylyl cyclase activities. R384Q and R384E displayed features associated with constitutively active receptors because inverse agonists markedly reduced their elevated basal adenylyl cyclase activities. Isoproterenol increased the phosphorylation and promoted the desensitization of the Gly389 or Arg389 allelic variants of the wild type beta1-AR but failed to produce these effects in R384Q and R384E, because these receptors were maximally phosphorylated and desensitized under basal conditions. In contrast to the membranous distribution of the wild type beta1-AR, R384Q and R384E were localized mostly within intracellular punctate structures. Inverse agonists restored the membranous distribution of R384Q and R384E, indicating that they recycled normally when their constitutive internalization was blocked by inverse agonists. These data combined with computer modeling of the putative three-dimensional organization of helix 8 indicated that the amphipathic character of helix 8 and side chain projections of Asp382 and Arg384 within the hydrophilic interface might serve as a tethering site for the G protein.  相似文献   

9.
Partially folded conformational ensembles of bovine pancreatic trypsin inhibitor (BPTI) are accessed by replacing Cys 5, 30, 51, and 55 by alpha-amino-n-butyric acid (Abu) while retaining the disulfide between Cys 14 and 38; the resultant variant is termed [14-38](Abu). Two new analogues with modifications in the beta-turn, P26D27[14-38](Abu) and N26G27K28[14-38](Abu), are compared to partially folded [14-38](Abu), as well as to [R](Abu), the unfolded protein with all six Cys residues replaced by Abu. Structural features of the new analogues of [14-38](Abu) have been determined by circular dichroism (CD), one-dimensional (1)H NMR, and 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence experiments. Both analogues are more disordered than the parent [14-38](Abu), but while P26D27[14-38](Abu) has a small population of native-like conformations observed by NMR, no ordered structure is detected for N26G27K28[14-38](Abu). Trypsin inhibition assays were carried out using a modified rat trypsin, C191A/C220A, that minimizes cleavage of unfolded peptides. Both [14-38](Abu) and P26D27[14-38](Abu) significantly inhibit modified trypsin. N26G27K28[14-38](Abu) has low but measurable inhibitor activity, while [R](Abu) has no activity even when in very high molar excess relative to trypsin. ANS fluorescence is enhanced by [14-38](Abu) and by both variants but not by [R](Abu). We conclude that partially folded ensembles of BPTI, even those with little or no CD- or NMR-detectable structure, contain minor populations of native-like conformations. Partially folded [14-38](Abu) and both variants, as well as [R](Abu), have enhanced negative ellipticity in CD spectra acquired in the presence of the osmolyte trimethylamine N-oxide (TMAO). TMAO-induced structure is formed cooperatively, as indicated by thermal unfolding curves. Inhibitor activity as a function of TMAO concentration implies that the osmolyte-induced structure is native-like for [14-38](Abu) and P26D27[14-38](Abu) and is probably native-like for N26G27K28[14-38](Abu). [R](Abu) also shows increased CD-detected structure in the presence of TMAO, but such structure is likely to be collapsed and non-native.  相似文献   

10.
The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out.  相似文献   

11.
12.
The GTP hydrolytic (GTPase) reaction terminates signaling by both large (heterotrimeric) and small (Ras-related) GTP-binding proteins (G proteins). Two residues that are necessary for GTPase activity are an arginine (often called the "arginine finger") found either in the Switch I domains of the alpha subunits of large G proteins or contributed by the GTPase-activating proteins of small G proteins, and a glutamine that is highly conserved in the Switch II domains of Galpha subunits and small G proteins. However, questions still exist regarding the mechanism of the GTPase reaction and the exact role played by the Switch II glutamine. Here, we have characterized the GTP binding and GTPase activities of mutants in which the essential arginine or glutamine residue has been changed within the background of a Galpha chimera (designated alpha(T)*), comprised mainly of the alpha subunit of retinal transducin (alpha(T)) and the Switch III region from the alpha subunit of G(i1). As expected, both the alpha(T)*(R174C) and alpha(T)*(Q200L) mutants exhibited severely compromised GTPase activity. Neither mutant was capable of responding to aluminum fluoride when monitoring changes in the fluorescence of Trp-207 in Switch II, although both stimulated effector activity in the absence of rhodopsin and Gbetagamma. Surprisingly, each mutant also showed some capability for being activated by rhodopsin and Gbetagamma to undergo GDP-[(35)S]GTPgammaS exchange. The ability of the mutants to couple to rhodopsin was not consistent with the assumption that they contained only bound GTP, prompting us to examine their nucleotide-bound states following their expression and purification from Escherichia coli. Indeed, both mutants contained bound GDP as well as GTP, with 35-45% of each mutant being isolated as GDP-P(i) complexes. Overall, these findings suggest that the R174C and Q200L mutations reveal Galpha subunit states that occur subsequent to GTP hydrolysis but are still capable of fully stimulating effector activity.  相似文献   

13.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N'-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F(1)-F(o) interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

14.
All organisms except the nematode Caenorhabditis elegans have been shown to possess an import system for peroxisomal proteins containing a peroxisome targeting signal type 2 (PTS2). The currently accepted consensus sequence for this amino-terminal nonapeptide is -(R/K)(L/V/I)X(5)(H/Q)(L/A)-. Some C.elegans proteins contain putative PTS2 motifs, including the ortholog (CeMeK) of human mevalonate kinase, an enzyme known to be targeted by PTS2 to mammalian peroxisomes. We cloned the gene for CeMeK (open reading frame Y42G9A.4) and examined the subcellular localization of CeMeK and of two other proteins with putative PTS2s at their amino termini encoded by the open reading frames D1053.2 and W10G11.11. All three proteins localized to the cytosol, confirming and extending the finding that C.elegans lacks PTS2-dependent peroxisomal protein import. The putative PTS2s of the proteins encoded by D1053.2 and W10G11.11 did not function in targeting to peroxisomes in yeast or mammalian cells, suggesting that the current PTS2 consensus sequence is too broad. Analysis of available experimental data on both functional and nonfunctional PTS2s led to two re-evaluated PTS2 consensus sequences: -R(L/V/I/Q)XX(L/V/I/H)(L/S/G/A)X(H/Q)(L/A)-, describes the most common variants of PTS2, while -(R/K)(L/V/I/Q)XX(L/V/I/H/Q)(L/S/G/A/K)X(H/Q)(L/A/F)-, describes essentially all variants of PTS2. These redefined PTS2 consensus sequences will facilitate the identification of proteins of unknown cellular localization as possible peroxisomal proteins.  相似文献   

15.
B R DasGupta  J Foley 《Biochimie》1989,71(11-12):1193-1200
The flaccid paralysis in the neuromuscular disease botulism appears to depend on the coordinated roles of the approximately 50 kDa light and approximately 100 kDa heavy chain subunits of the approximately 150 kDa neurotoxic protein produced by Clostridium botulinum (J. Biol. Chem. (1987) 262, 2660 and Eur. J. Biochem. (1988) 177, 683). We observed that the light chain after separation from its conjugate heavy chain, in the presence of dithiothreitol and 2 M urea, begins to split into approximately 28 and approximately 18 kDa fragments. The other subunit-the approximately 100 kDa heavy chain following its isolation-and the parent approximately 150 kDa dichain neurotoxin do not break down under comparable conditions. This cleavage was examined in the neurotoxin serotypes A and E. The cleavage does not appear to be due to a protease. Partial amino acid sequences established that: i) the approximately 28-kDa and approximately 18-kDa fragments comprise the N- and C-terminal regions of the light chain, respectively; ii) the light chain of the neurotoxin serotypes A and E break down at precise peptide bonds; iii) the peptide bonds cleaved in serotypes A and E are five residues apart; and iv) the portions of the approximately 18 kDa fragments of serotype A and E neurotoxin sequenced so far are highly homologous to the corresponding region of tetanus neurotoxin produced by Clostridium tetani. The partial N-terminal sequence of the approximately 28 kDa fragment matches with the N-terminal sequence of the intact L chain. The 47 residues of the approximately 18-kDa fragment of type A sequenced from its N-terminal are: -Y.E.M.S.G.L.E.V.S.F.E.E.L.R.T.F.G.G.H.D.A.K.F.I.D.S.L.Q.E.N.E.F.R.L.Y.Y .Y. N.K.F.K. D.I.A.S.T.L.-. These align with those of tetanus neurotoxin beginning at its residue #259 (Tyr); the 18 underlined residues of the above 47 residues (i.e. 38%) are identical in positions between the two proteins. The 41 residues sequenced from the approximately 18 kDa fragment of type E botulinum neurotoxin are: -K.G.I.N.I.E.E.F.L. T.F.G.N.N.D.L.N.I.I.T.V.A.Q.Y.N.D.I.Y.T.N.L.L.N.D.Y.R. K.I.A.X.K. L.-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
B‐cell lymphoma extra‐large protein (BclXL) serves as an apoptotic repressor by virtue of its ability to recognize and bind to BH3 domains found within a diverse array of proapoptotic regulators. Herein, we investigate the molecular basis of the specificity of the binding of proapoptotic BH3 ligands to BclXL. Our data reveal that while the BH3 ligands harboring the LXXX[A/S]D and [R/Q]XLXXXGD motif bind to BclXL with high affinity in the submicromolar range, those with the LXXXGD motif afford weak interactions. This suggests that the presence of a glycine at the fourth position (G+4)—relative to the N‐terminal leucine (L0) within the LXXXGD motif—mitigates binding, unless the LXXXGD motif also contains arginine/glutamine at the ?2 position. Of particular note is the observation that the residues at the +4 and ?2 positions within the LXXX[A/S]D and [R/Q]XLXXXGD motifs appear to be energetically coupled—replacement of either [A/S]+4 or [R/Q]‐2 with other residues has little bearing on the binding affinity of BH3 ligands harboring one of these motifs. Collectively, our study lends new molecular insights into understanding the binding specificity of BH3 ligands to BclXL with important consequences on the design of novel anticancer drugs. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 573–582, 2014.  相似文献   

17.
B Yu  G D Thompson  P Yip  P L Howell  A R Davidson 《Biochemistry》2001,40(51):15581-15590
Argininosuccinate lyase (ASL) is a homotetrameric enzyme that catalyzes the reversible cleavage of argininosuccinate to arginine and fumarate. Deficiencies in the enzyme result in the autosomal, recessive disorder argininosuccinic aciduria. Considerable clinical and genetic heterogeneity is associated with this disorder, which is thought to be a consequence of the extensive intragenic complementation identified in patient strains. Our ability to predict genotype-phenotype relationships is hampered by the current lack of understanding of the mechanisms by which complementation can occur. The 3-dimensional structure of wild-type ASL has enabled us to propose that the complementation between two ASL active site mutant subunits, Q286R and D87G, occurs through a regeneration of functional active sites in the heteromutant protein. We have reconstructed this complementation event, both in vivo and in vitro, using recombinant proteins and have confirmed this hypothesis. The complementation events between Q286R and two nonactive site mutants, M360T and A398D, have also been characterized. The M360T and A398D substitutions have adverse effects on the thermodynamic stability of the protein. Complementation between either the M360T or the A398D mutant and the stable Q286R mutant occurs through the formation of a more stable heteromeric protein with partial recovery of catalytic activity. The detection and characterization of a novel complementation event between the A398D and D87G mutants has shown how complementation in patients with argininosuccinic aciduria may correlate with the clinical phenotype.  相似文献   

18.
Abstract: RNA editing plays an important role in determining physiological characteristics of certain glutamate-gated receptor (GluR) channels such as Ca2+ permeability and desensitization kinetics. In one case, the editing changes a gene-encoded glutamine (Q) to an arginine (R) codon located in the channel-forming domain of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR-B and also the kainate receptor subunits GluR5 and GluR6. Another case of RNA editing alters an arginine (R) to a glycine (G) codon at a position termed the "R/G" site of AMPA subunits GluR-B, C, and D. Double-stranded RNA-specific adenosine deaminases (DRADA) have been implicated as agents involved in the editing. By using a human teratocarcinoma cell line, NT2, we investigated the change of the RNA editing of GluR subunits in conjunction with the expression of two DRADA members, DRADA1 and DRADA2 genes, during neuronal differentiation. Whereas Q/R and R/G site RNA editing both become progressively activated in differentiating NT2 cells, the expression of the two DRADA genes can already be detected even in the undifferentiated NT2 cells. Development of the editing machinery appears to require, in addition to DRADA enzymes, a currently unidentified mechanism(s) that may become activated during neuronal differentiation.  相似文献   

19.
Mutants of HIV-1 protease that are commonly selected on exposure to different drugs, V82S, G48V, N88D and L90M, showed reduced catalytic activity compared to the wild-type protease on cleavage site peptides, CA-p2, p6pol-PR and PR-RT, critical for viral maturation. Mutant V82S is the least active (2-20% of wild-type protease), mutants N88D, R8Q, and L90M exhibit activities ranging from 20 to 40% and G48V from 50 to 80% of the wild-type activity. In contrast, D30N is variable in its activity on different substrates (10-110% of wild-type), with the PR-RT site being the most affected. Mutants K45I and M46L, usually selected in combination with other mutations, showed activities that are similar to (60-110%) or greater than (110-530%) wild-type, respectively. No direct relationship was observed between catalytic activity, inhibition, and structural stability. The mutants D30N and V82S were similar to wild-type protease in their stability toward urea denaturation, while R8Q, G48V, and L90M showed 1.5 to 2.7-fold decreased stability, and N88D and K45I showed 1.6 to 1.7-fold increased stability. The crystal structures of R8Q, K45I and L90M mutants complexed with a CA-p2 analog inhibitor were determined at 2.0, 1.55 and 1.88 A resolution, respectively, and compared to the wild-type structure. The intersubunit hydrophobic contacts observed in the crystal structures are in good agreement with the relative structural stability of the mutant proteases. All these results suggest that viral resistance does not arise by a single mechanism.  相似文献   

20.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号